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Abstract

Our objective is to give asymptotic expansions for moments of standardized statistics based
on n independent, identically distributed random variables as n — co. The basic premise is that a
simple tail condition on the underlying distribution which implies the moments of a standardized
quantile converge to the moments of an appropriate normal distribution is sufficient to assure the

validity of asymptotic moment expansions for many statistics which are resistant to outliers.

The primary result we present gives sufficient conditions for the validity of moment ap-
proximations based on moments of Taylor’s series approximations which are obtained by using fune-
tional differentiation. We apply the theory to some L- and M-estimates and present a Monte Carlo
study to show that the approximations for the variance of statistics based on small to moderate

sample sizes can be quite good.

Prior to studying the above general problem we consider the proB_lem of the convergence of
the moments of a standardized quantile to those of an appropriate normal distribution. Our proof
of moment convergence requires fewér non-tail conditions on the underlying distribution than were
used in previously published results. We also extend the result to show necessary and sufficient tail
conditions on the underlying distribution for convergence of the moment generating function of a

standardized quantile to that of a normal distribution.
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Chapter 1
Summary and literature review

§1.1 Introduction.

This chapter summarizes the results obtained and gives a literature review for the two basic
problems which we consider. First we consider the convergence of the moments of a standardized
quantile to the moments of a normal distribution, and then we move on to summarize results on

asymptotic expansions for moments of robust statistics.

§1.2 Standardized quantiles.

In chapter 2 we will attack the problem of the convergence of the moments of a standardized
quantile to the moments of a normal distribution using direct methods; 7.e., we will write down
integral expressions for expectations and use standard tools frem analysis to obtain results. Although
much of the theory of the rest of the thesis is not heavily dependent on this chapter, some basic

ideas arc illustrated without the additional tools and technical problems of later chapters.

For ihdependent‘, identically distributed random variables with distribution function F,
necessary and sufficient tail conditions needed for convergence of moments of standardized quantiles

arc

— ' - J —log F(—
0 < oy = lminf M.D and 0 < o_ = lim inf —28 ( -"’)'
T—00 log T z-—+00 log T

Blom (1958), Sen (1959) and Bickel (1967) have considered equivalent conditions, but have not

(1.2.1)

explicitly defined ‘quantities which are quite as useful as oy and a__. We will discuss the relation of
the values of a; and a_ to the existence of moments, the existence of moments of order statistics,

regular variation, and hazard functions, as well as their relation to the convergence of moments of

1



2 . 1. Summary and literature review

standardized quantiles. The only other condition on F we require is that it be differentiable at the
quantile of interest. Other authors have required that F' be an absolutely continuous distribution,

but we have developed a simple proof which does not require this condition.

Most of the results of chapter 2 will be concerned with the expectations of functions of
standardized quantiles. This general approach will allow us to consider convergence in distribution
and convergence of the moment generating function as well as convergence of moments. Whereas the
result on convergence in distribution is contained in results given by Smirnov (1952) and Wretman
(1978), and the resuits on convergence of moments are variations on previous results as discussed
above and in chapter 2, the result on the convergence of the moment generating function is believed -

to be completely new.

§1.3 Robust statisﬂics.

In chapter 3 we will extend the results of chapter 2 in two ways. First, we will show that the
conditions of (1.2.1) arc sufficient to assure convergence of moments of many statistics which have
bounded influence functions. Second, we give higher order expansions of moments using functional

differentiation.

Previous applications of functional differentiation in statistics have been proofs of versions
of the central limit theorem, the theory of Edgeworth expansions, the law of the iterated logarithm,
and the Berry-Esséen theorem. Serfling (1980), Reeds (1976), and Huber (1981) present surveys on
the applications of functional differentiation in statistics. To our knowledge the theory has not been

used to prove the validity of asymptotic moment expansions.

The theory presented here involves showing that for a functional statistic T, an underlying,

distribution ', and an empirical distribution function F, an expansion of the form

E{(T(F,)— T(F))'] = E[ zk: T;{(F; Fn — F)/j!) } + o(n~rFE-1)/2) (1.3.1)

j=1
is valid under some assumptions. We have used a version of Fréchet differentiation to prove
this result. The condition of Fréchet differentiability on T is a strong one. If a functional' T
is Fréchet diffcrentiable then the corresponding functional statistic 7'(Fy,) is, in general, resistant
to outliers. It is this fact that allows us to use the same tail conditions which are used for
quantiles to show convergence .o‘f moments of many other statistics. That Fréchet differentiability
is a stronger condition than we might like is indicated by the fact that quantiles do not correspond
to a Fréchet differentiable functional, and yet quantiles are statistics which are resistant to outliers

whose moments converge under the tail conditions we use.



1.3. Robust statisties. 3

At the end of chapter 3 we give (previously known) results to aid in computing the
right hand side of (1.3.1) to within o(n~("+*¥~1)/2). In chapter 4 we develop formulas for these.
approximations for M-estimates of location which are not scale invariant and for L-estimates. In
particular, we give formulas for first and second order mean and variance approximations in these
cases. In chapter 5 we include Monte Carlo studies to test how well the moment approximations
work in small to moderate sample sizes. We present a small simulation study of nonparametric
estimates of variance obtained through the use of the ébove mentioned variance approximation
formulas. The relation of these estimates to the delta method and the bootstrap is noted. Finally,
we try one method of extending our theory to quantiles and trimmed means to demonstrate some

of the limitations of our results.

Bickel (1967) uses convergence of moments of quantiles and theory on Brownian bridges as
his primary tools for showing the convergence of moments of L-estimates. We use similar results on
quantiles, but using functional differentiation as our other basic tool allows us to extend Bickel’s work
in several ways. First, we have fewer restrictions on the distribution function to get c(;nvergence of
moment results for L-estimates. There is a tradeoff between restrictions on the distribution function
and restrictions on the weight function for an L-estimate in formulating theorems on the asymptotics
of an L-estimate. Bickel proves results with fewer restrictions on the weight function. Second, we
extend his results to higher order moment expansions. Third, our results go beyond his in that we

apply them to M-estimates and have the potential to apply them to other robust estimates.

Stigler (1974) has shown that the variances of many L-estimates converge to those of their
limiting distributit;ns. His method of proof is to usc Hijek projections, which requires L2-convergence »
to get convergence in distribution results. The basic assumptions needed are a smooth weight
function and either the existence of a variance of the underlying distribution or the deletion of a
proportion of the extreme order Statistics. Our theorem on L-estimates is an extension to higher
moments and higher order expansions of his theorem 5 which has weaker conditions on the tails of

the underlying distribution.

Mason (1981) extends Stigler’s resulls on the convergence of variances of L-estimates in
the case where the variance of the underlying distribution does not exist. Instead of requiring that
a positive proportion of the extreme order statistics have céeﬂicient zero, he requires only that a
finite number of the extreme order ‘statistics have coeflicient zero. Although we have not done so, it

should be possible to extend our results in this fashion.

Eynon (1982) applies some of the theory given here in a study of location and scale invariant

M-estimates and P-estimates (P-estimates are analogs of Pitman estimates; see Johns (1979)) using
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some of the theory presented here. He has also attempted to automate much of the algebra and

calculus on which we spend considerable energy in chapter 4.



Chapter 2
Convergence of moments of quantiles

§2.1 Introduction.

Let X,, X5, ... be independent, identically distributed (iid) random variables with cumula-
tive distribution function (cdf) F. Our convention will be that F is right continuous;
i.e., F(z) = P{X) < z}. Assume ¢ € (0,1), F(q) = ¢, and the derivative of F at qis f(g) > 0.
Denote the order statistics of X, X5, ..., X, by Xl;,.,ng,., ev o3 Xnin. Let ap = en + O(1). Assume
Z ~ N(0,c(1 —¢)/f*(q)). Given these assumptions, we will consider conditions on the tails of F
which are necessary and sufficient for E[g(y/n(Xq,:m — g))] to converge to E[g(Z)]. We will consider
functions g in a class which includes g(z) = I, 00)(z), g(z) = 2" and g(z) = €*®. The corresponding
results are convergence in distribution, convergence of moments, and convergence of the moment
generating function, respectively. One pair of necessary and sufficient conditions for g to be in this

class is

M >0 and lim i'nf:bg(—F(iz_)) >0 | (2.1.1)

lim inf z—oo log(|g(—=z)]) v .

z—oo  log{|g(z)|)
Another necessary and sufficient condition is that there exists § > 0 such that Ef|g(X;)|%] < co.

A theorem which will eventually connect these two types of tail conditions will be given>
in section 2.2; This theorem is actually of some interest in itsclf as it may be used to determine
whether or not the expectation of a function of a random variable exists. The results stated above
will be proved in section 2.3. In section 2.4 we will discuss other conditions related to the tail
conditions in (2.1.1). The moment convergence results will be extended to finite linear combinations
of quantileg at the end of section 2.3 and to many robust statistics in chapters 3, 4 and 5. Besides

applications to moments and moment gencrating functions of quantiles from sequences of iid random
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6 : 2. Convergence of moments of quantiles

variables, applications to sequential occupancy and related problems are suggésted by Holst (1981),
and Anderson, Sobel and Uppuluri (1982).

Smirnov (1952) and Wretman (1978) have (independently) shown that «/n(Xs,:n — ¢) is
asymptotically normal if F is differentiable at ¢. This is also a simple consequence of a result on
Bahadur representation given by Ghosh (1971). Asymptotic theory for the case f(g) = 0, the case
- where left and right hand derivatives of F at ¢ differ, and the case with @, = cn + o{y/n) will not
be given here. It should be easy to extend the present theory to these cases. Smirnov (1952) gives

asymptotic distribution theory for these cases.

Other authors have considered asymptotic behavior of moments of order statistics. The
differences in the present treatment are that we consider weaker conditions on F' and have introduced
tail conditions which are equivalent to other conditions which have been used. Sen (1959) assumes
F is continuous everywhere (for convenience) and twice differentiable in some neighborhood of g.
The second derivative of F at ¢ is needed to obtain a cénvergence rate. Bickel (1967) assumes that
f is continuous and strictly positive on {z : 0 < F(z) < 1} and shows that there exists a o(n™"/%)
‘bound for E[(y/n(Xa,:» — ¢))7] — E[Z7] which is independent of ¢. He remarks that for ¢ fixed the
only local requirement on F' needed is that f be continuous in a neighborhood of ¢—this is more

than we require. More discussion on tail conditions and local conditions on F is given in section 2.4.

Bounds for moments of X;., have been given by various authors. Many such results
are summarized in David (1980). In general, one must do more calculation and/or make more
assumptions to get these bounds than- to get the moment convergence results given here. David
also summarizes work done on higher order expansions of moments of order statistics. Of the work
prescnted there, the work of ‘David and Johnson (1954) has the closest relation to our work. Their

work is somewhat heuristic in that they do not give tail conditions necessary for their results.

§2.2 Tails and expectations.

A ‘nearly’ necessary and sufficient condition for the existence of the mean of distribution
will be given in this section. Results on the existence of moments and the moment generating
function will be considered as examples of extensions of this result. Finally, we extend these results

by considering the moments and the moment gencrating function of an order statistic.

Theorem 2.2.1 provides the main result nceded to determine when moments of (functions
of) standardized quantiles do not converge. Although it is similar to known results, we have not

found the result in the literature.
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Theorem 2.2.1. Suppose X is an arbitrary non-negative random variable with distribution func-

tion F'. Let

o = lim inf 1281~ F(=))
T-+00 log z

If & < 1 then E[X] = co. If a > 1 then E[X] < c0. If a = 1 either E[X] = o0 or E[X] < o
may hold. '

Proof: The last part of the proposition will be proved first. If F(z) =1—1/zforz > 1 thena =1
and E[X] = co. If P(z)=1—z"'e"V'8Z for z > 1 then @ = 1 and E[X] = 3.

Assume @ > 1. Then there exists A € (l,&) and z; such that if z > z; then
—log(1 — F(z)) > Xlogz. This implies that if z > z; then 1 — F(z) < z~ and thus E[X] < co.

Now suppose @ < 1. It will be shown that 3.2  P{X > k} = oo which implies
E[X] = oo. If @ < 1 then there exists X € (a,1) and z; < 73 < --- such that 1 — F(z,) > zJ*,
n = 1,2,---, and z, — 00 a8 n — 00. Let y, be the greatest integer less that or equal to z,,

n=1,2,---, and let yo = 0. Then

o0 oo Un s
Yn — Yn—1t . Yn
= > ————— - = -
E P{X > k} E E P{X >k} > E o > nl:{gox)‘ )
k=1 n=1 k=yn,—1+1 n=1 n n

Definition 2.2.2. For an arbitrary non-decreasing function g let g~ (z) = inf{y : g(y) > =}.

Corollary 2.2.3. Let X be an arbitrary random variable and denote its distribution function by
F. Let g be an arbitrary non-decreasing, non-negative function such that g(z) — co as z — F~1(1).
Let .
| —log(1 — F(z))
e—F-i(1)  logg(z)
If a > 1 then E[g(X)] < oo, if @ < 1 then E[g(X)] = oo, and if a =1 either E[g(X)] = oo or
E{g(X)] < co may hold.

Proof: Let1 <y < oo and let z = g~ !(y) +. Then g(z) > y and

—log(1 — F(z) _ —log(1 — F(g~™"(3)))
log g(z) - logy

Since as y — oo, x chosen in this fashion goes to F'~1(1) it follows that

—log(1 — F(z)) < liminf = log(1 — F(¢™'(y)))

z—F-1(1) log g(z) y—r00 logy
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If we fix = € (g7 '(14), F~*(1)) and let y = g(z) then g~ (y) < z and

—log(l — F(z)) > = log(1 — F(57(y)))
log g(z) - logy

As z — F7}(1), y chosen in this fashion goes to co and thus

—log(1 — F(z)) > liminf log(1 — F(g~*(v)))

limin

z—F-1(1) log g(z) Y00 fogy
‘We have now shown
- - — - —1
fming —lo8—=F(@) _ . . —log(l~ Flg~"(v)))
z—F-1(1) log g(z) y—oo Togy
Since
— — —1 _ o _1
fip ~ el = Flg™! @) _ -~ log(l — Fg™!(z+)))
Z—ro0 logz Z-00 log
= lim inf — log P{g(X) > =z}
T— 00 log x

the contention follows from theorem 2.2.1. @

Corollary 2.2.4. For an arbitrary random variable X with distribution function F let

oy = lim inf = log(1 — F(:c)), o = limiof = log F(—=)
Z—»00 log:c Z£—+00 lOgZB

and o = min(ay, ). If0 < r < a then B[ X|"] < co. Ifr > a then ElX||=o00. Ifr=a>0
then either E[|X|"] = oo or E[|X|"] < oo may hold.

Corollary 2.2.5. For an arbitrary random variable X with distribution function F(z) let

— . .
ay == lim inf —M and oy = —lim inf
T—00 T : Z—+00

—log F(—x)
—

If t € (ay, o2) then E[etX] < 0o0. Ift < oy or t > ay then E[e*X] = oo.

Note that z is in the denominator of the functions defining o; and g whereas log z is in the
denominator when defining oy and a... The values ey and a_ are equally useful when considering

the existence of moments of order statistics.

Theorem 2.2.6. Define oy and a_ as in corollary 2.2.4. Ift > rfa_ andn—i+1 > rfay
then Bl|Xim|T] < 00. If i < rfa orn—i+1 < r/ay then B[|Xim|"] = co.

Proof: TFirst assume n—¢+1 < r/oy. Since

P{[Xinl” > 2} > P{Xim > 5'/7} 2 (1 = Fa/M))",
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and since
—log((1 — F zl/r n—i+1 o _ _
tim ing — 08~ FE=T) ) _moid Ly log(l— Fla)) <1 (z.2.1)
00 log:c r T—+00 logz
it follows from theorem 2.2.1 that E{|X7,,,|] = oco. For ¢ < r/a_ the proof is analogous.
Now assume r/a_ < i and r/ay < n—i+ 1. We have
lim inf — IOgPﬂXiml > a:} :
z—00 log z ( |
— _al/r - .. 1/r 2.2.2
> min (lim inf Z 08P Ken < 227}y 2108 P{Xen > 21T}
—— logz z—r00 log =

Since |
SR T
i
the inequality in (2.2.1) can be switched in this case to > and we have

—log P{Xi:n > a:l/'}

lim inf >1
z—00 - log:z:
Similarly,
_ 3 . V14
lim ing — 128 P{Xim < =27}
z—+00 log:v

and from (2.2.2) and theorem 2.2.1 the contention follows. R

§2.3 Convergence of moments of standardized quantiles.

We are now prepared to address the questions of interest. The proof of the most general
moment convergence result for quantiles is analytic and somewhat tedious in nature. The 'proof of
convergence does not use uniform integrability. A proof using uniform integrability would require
analysis similar to that given below. The proof of the necessity of tail conditions such as (2.1.1) for
the existence of moments of standardized quantiles will now become trivial in many cases. Following
is the most gencral result concerning ‘ncccssity’ that will be given. It is a variation of thecorem 2.2.6.

In applications we will take n > 1 and 3 (dcfined in the theorem) to be y/n.

Theorem 2.3.1.  Suppose g is a non-decreasing, non-negative function, and X, Xy,... are inde-
pendent identically disiributed random wvariables with = distribution function F  where

F71(1) = co. Suppose further that

lim inf o8t = F(=)) _
z— 0o log g(z)
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Then for any B > 1, real 5, and positive integers n, ¢, 1 < ¢ < n, it follows that

E[g(ﬁ(xi:n - ﬂ))] = O0.

Proof: Since for large =

P{g(B(Xim — 1)) > } > P{g(Xiwn) > =}
> (1— F(g~!(z+))*=+

it follows that

— - —1f
i+ 1) liming T1E0 = PO (=)
© Z—00 logz

timint 08P 0BXKin —n) > 7}
z—c0 log = .

From the proof of corollary 2.2.3 we can see that-

— — —1fp: - -
i ZJOBL = o)) _ o~ logl1 — F(z)
z—00 log z Z~—00 log g()

and the proof is completed by the applica.ﬁon of theorem 2.2.1. §

We will now address the problem of convergence. It will be useful to label the following

assumptions:

i. g is a finite, continuous, non-decreasing, non-negative function defined for all real numbers.

ii. ¢ is bounded, or there exist B,x0 > 0 such that if t > 1, z > z¢ then log g(tz) < tBlogg(z).

i liminr 2080 F@) _ o
z—00 log g(z)

iv. ¢€(0,1), an =cn+ O(1), cp = an/n = c+ O(1/n).
Vo Flo) =6 &F() lomq= f(a) > 0.

We have chosen assumptions ¢ and # to make the proofs of our general results simple.
The functions g in which we are interested are I[y,oo)(a:) (this does not satisfy condition %, but this
problem can be overcome by smoothing), z"Ijo,c0)(z), 7 = 1,2, ..., and ¢**. Clearly e** for t > 0
and Ijy,o0)(2) satisfy #. To show that =" Ijp,o0)() satisfies i we let z > zg > e. For t > 1 we define
hy(t) = rlog(tz). Then hi(1) = rlogz and for t > 1, B(t) = r/t < r. Now define hy(t) = rtloga.
Then hg(1) = rlogz and for ¢ > 1, hh(t) = rlogz > r. These facts imply that if £ > 1 then hy(t)
< ha(t). It now follows that if zo > e then i holds for z" Ijg,c0)(x). More discussion on assumption

# will be given in section 2.4.
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To avoid complicated formulas for cases with F not continuous we use the representation

BlViXoum — ] = [ o(vAlF @) = ahn( T} )t —wran 2a)

Using Stirling’s formula n! = /2an"t1/2¢=7¢0/(127) yhere 0 < 6, < 1 (see, e.g., Rényi (1970),
p- 149 ff.) and letting ¢, = ¢ + O(1/n) as in v it is a straightforward calculation to show that as

n — 00

(n ——11) = (VZan)~tegmen 121 — ¢,)m=en)=1/2(1 4 O(1/n)). (2.32)

Qy

Thus uniformly for u € (0, 1)

n—1%, , n—a. e, 1w\ 1 — g \"(1=cn) .
n(a” — 1)“ 1—u) ~ m;(;) (F—Tn) (2.3.3)

<

Let
p(u,v) = v(log v — log u) + (1 — v)(log(l — v) — log(1 — u)). (2.3.4)

In the following we let log0 = —co and ¢~ = 0. From this and (2.3.1)—(2.3.4) it follows if g is

non-negative and ¢, = ¢+ O(1/n) then as n — oo

Elg(vn(Xa,m — q))] ~ /(; 7/ HIE—_"—Z;}% exp (log g(Vn(F~(u) — ¢)) — np(u, cn))du. (2.3.5)

The proof of the following lemma contains the key ideas needed to show convergence of expectations

of functions of standardized quantiles.

Lemma 2.8.2. Under assumptions i—iv if €,b > 0 and 7 < 1/4 then

. .
0= kLm n"% exp (log g(v/n(F~(u) — g)) — np(u, c,))du.

n-—co Jeten—"

Proof: We choose an arbitrary ¢ > 0. Without loss of generality we assume v € (0,1/4) and
g < F~1{e).

First we will show that the integrand goes pointwise to zero. We will consider a Taylor’s
series approximation of p in the neighborhood of (¢, c). The first and second partial derivatives of p

are

6—5 = log v — log u — log(1 — v) + log(1 — u), (2.3.6)

, (2.3.7)
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% 1 1
"y 1= "
d%p v 1—-v
-72-——u—2‘+(1_u)2 >0, and
a2p 11

Using the first order Taylor’s series expansion with remainder, it follows from the above that for
some 01(u,v) in the closed interval between ¢ and u and 02(u, v) in the closed interval between ¢ and

v

p(u,v) =

(u—c)2(92(u,v)+ 1—92(u,v))+(v——c)2( 1 1 )

2 - \03(w,0) " (1= 0i(u,0)? 3 \0a(w,9) | 1— 0a(u,)

—(v—e)(u— C)(ol(qll, ») 1= 0:(% ”))'

Since ¢ = ¢ + O(1/n) and p(u, v) (from (2.3.7)) is increasing in u for u > v we have for some Ny,

alln > Ny, and u € [c+ en™7,1)
p(u,en) > cc®n"27/4,
Thus for n > N, the integrand is bounded by

¢ Yexp (blogn + log g(v/n(F~*(u) — q)) — n'~27ce? /4). (2.3.8)

For g bounded the result follows immediately from the dominated convergence theorem since (2.3.8)
goes pointwise to zero and since if n > N, this may be bounded by some constant for all «. Simila,riy,

the result now follows for the case with ¢ = F~1(c) = F~I(1).

Now assume that g is not bounded and F~1(1) = oco. Let ¢g = SUP,> N, Cn. We suppose

Ny is sufliciently large so that cp < 1. It follows from (2.3.6) that if n > Ny and u > ¢q then

p(u, cn) > p(u, co). (2.3.9)

From the assumption that lim inf ,,_,eo(— log(1 — F(x))/ log g(z))> 0 (assumption #z) we see that
there exist uy € (co,1), 71 > 0 such that if u € (uy,1) then

—log(1 —u) > 71 logg(F~'(u)).
From (2.3.4) we see that there exists g2 > 0 such that for u € (uy,1)

p(u, cg) > —n2 log(l — u).
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Thus for v € (u1,1) and g =192 > 0

plu, c0) > nlog(g(F~(u))). | (2:3.10)

We now assume in addition to the above that u, is so large that F'~!(u;) — ¢ > x¢ where zq is as
in #%. We let k > 1 (this is needed below because g may be less that zero) be such that if u € (v1,1)
and n > N; then

log g(v/a(F~!(u) ~ g)) < kv/nflog g(F~*(u)). (2.3.11)

From (2.3.9)—(2.3.11) we may now bound the integrand of the lemma for u € (u,1), n > Ny by
¢ exp (blogn + (kv/nf — nn)log g(F—l(u))).

Given this bound we may now apply the dominated convergence theorem to the integral on the

interval (uy,1).

If F7'(1) < oo and ¢ < F7(1) let u; = 1. Otherwise let u; be as in the previous
paragraph. Let 7o be as in 4. Let Np > N be such that «/Ny(F~1(u;) — q) > z¢. Assumption #
then implies that for n > Np and c+en™ < u < uy

log g(v/r(F~!(u) — q)) < log g(v/n(F~"(u1) — q))
< Bv/n/N; log g(v/No(F~(u) — q)),

which with (2.3.8) implies that the integrand is bounded on [c + en™7,u,] for n > N, by

¢ Lexp (b logn + Bv/n/N;log g(\/_N—z(F_l(ul) —q))— n1"27ce2/4).

It follows that the integral on (¢ + en™7,u;] goes to zero as n — oo by the dominated convergence

theorem, and the proof is complete. J

One more result is needed to show convergence of moments. We could choose to show
uniform integrability of g(v/n(Xa,:» — ¢)) and then use Wretman’s (1978) result for convergence in
distribution. However, it is almost as easy to show convergence of moments directly using lemma
2.3.3 given below. The constant 2/9 of the lemma is arbitrary. The proof holds when this value is
replaced by any number between 1/5 and 1/2. A constant less than 1/4 is nceded to use the lemma

in conjunction with lemma 2.3.2.

Lemma 2.3.8. Assume conditions 4%, and iv hold, k > 0, and Y ~ N(0,k2%c(1 —c)). Then for

anye>0asn— oo

ao= [ oy — [ ot = ) — (1)L

—e/n3/®
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Proof: Assume k = 1. By applying equation (2.3.3) and letting z = Vr(u— c,,) we see that

E"(e) _ /enslls+s/'7(c—c,.) g(z + \/'7»(67. — c)) (1 + z )an—l(l _ ___z__)n—%dz.
—enB/18.4  fri(e—c,) 2nc(l — ¢)) Vnen V(1 —cn)

We will use the Taylor’s series expansion

z% 23 zt z9 .

log(l+x)=a:—-—§—+—3————4—-+m
which is valid for —1 < z < 1 and some 6(z) betwcen 0 and z. Let

a- 2c)2* _ (1—3c+ 3c?)zt
3v/nc?(1 — c)? dncd(l —c)®

It is a straightforward calculation to show that as n — oo

an—1 n—an
2
' max log{ |1+ — 1-— +—z——-—-—'w,,(z)—vO.
lo| < ens/18 4 /Rje—cal | Ve Vil = ¢n) 2¢(1 —¢)

Thus

wp(z) =

s/18 _
Enle) ~ /‘" e glz + vnlen — <)) exp (—22/(2¢(1 — ¢)) + wn(2))dz.

end/18 4 /n(c—cn) 2me(l —¢)) :
Since ¢, = ¢ + O(1/n) assumption 7 implies g(z + v/n(c, —¢)) — ¢(2) for each fixed z. Assumption
% implies that g grows at most exponentially. Since z/y/n = o(1) uniformly for all z in the range
of integration it follows that w,(z) = o(2%) uniformly in this range. These facts imply that the
integrand above can be bounded by k; exp(—k22z2) for some ky, k2 and n large. Thus by the

dominated convergence theorem &,(¢) — E[g(Y)}.

For k # 1 we let gi(z) = g(kz) and apply the result for k = 1 to g; since ¢, iz, and v are
still satisfied. A

We are now prepared to prove the most general convergence result which we shall present..
Theorem 2.3.4. If conditions i—v are satisfied and Z ~ N(0,c(1 — ¢)/f*(q)), then as n — oo
E[g(vn(Xa.:n — 9))] — Elg(Z)].

Proof: From (2.3.1), (2.3.3), and lemma 2.3.2 and its obvious analog it follows that for any € > 0,

c+e/n??

Efg(vn{Xa,m — 9))] ~ fc g(Vn(F~(u) - q))n(;:—_ll)u“"“(l — u)"*~du.

For any § > 0 there exists ¢ > 0 such that for u € (¢ —¢,¢ + €)
u—c u—c

(=97 (@ fla)”

The result now follows from lemma 2.3.3 by substituling the two bounds into the integrand above

_5/"2/9
< F Y u)—g<(1+9) (2.3.12)

and noting that § > 0 was arbitrary. §
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We will now consider applications of theorems 2.3.1 and 2.3.4. For propositions 2.3.5—2.3.9

assume that iv and v hold, and that Z ~ N(0, ¢(1 — ¢)/£%(q)).

Proposition 2.3.5. As n — oo, /n(X,,.n — q) converges in distribution to Z.
Proof: We will show that for z; arbitrary P{y/n(Xa.:n — ) > 2} - P{Z > z,} as n — oo. For
€ > 0 welet

9e(7) = I(z,,00)(z) + (1 + (2 — 21)/ [z, ¢,z (2)-

and apply theorem 2.3.4 to g.. By letting ¢ — 0 we obtain

limsup P{vn(Xo,.n — q) > 71} < P{Z > =z,}.

n—00

In a similar fashion we can show
lim inf P{/n(X,,:n — q) > z,} > P{Z > z,},
n-—00

and the proof is complete. 1§

Proposition 2.3.6. Define a, and a_ as in corollary 2.2.4. If r is a positive integer then

E{(vn(Xanin — ¢))"] = E[Z27] as n > o0 if and only if oy > 0 and a_ > 0.

Proof: The necessity of ey > 0 and a_ > 0 follows from theorem 2.2.6 or theorem 2.3.1.

Now assume a} > 0 and a_ > 0. Letting g(z). = z"I{,-0)(z) it follows from theorem
2.3.4 that Efg(v/n(Xa,:n — g))] — E[g(Z)]. Letting Y; = —X;, b, = n+ 1 — a, it follows that
- Elg(v/n(Ys,:n — q))] = E[g(Z)]. The result now follows since

' BIAXarm ~ 0))] = Elo(y/AXanem = )] + (1) Elg(VAYoem — )]

Proposition 2.3.7 below follows from proposition 2.3.6 and corollary 2.2.4. Proposition 2.3.8
follows from theorems 2.3.1 and 2.3.4. Proposition 2.3.9 follows from proposition 2.3.8 and corollary

2.2.5.

Proposition 2.3.7. Ifr > 0 then Ef(vn(Xapin — )] = E[27] as n — o0 if and only if there
‘exists § > 0 such that E[|X;]°] < co. '
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Proposition 2.3.8. Define a; and az as in corollary 2.2.5. Then E[exp(t\/ﬁ(Xan:n -q))] —
E[et?] for allt > 0 if and only if @y > 0. Similarly Elexp(ty/n(Xa,:n — q))] = E[et?] for allt < 0
if and only #f oy < 0. '

Proposition 2.3.9. For allt > 0 Elexp(ty/n(Xa,:n — q))] — E[e*Z] if and only if there exists
€ > 0 such that E[e*X!] < oo. Similarly Elexp(tv/n{Xa,:n — q))] — E[et?] for allt < 0 if and only
if there exists € > 0 such that Ele™%1] < oo. )

In the next section we will note some relations that sometimes simplify applications of
the above propositions. These arguments and propositions 2.3.6 and 2.3.7 imply that moments of
standardized quahtiles from all commonly considered distributioﬂs converge. Propositions 2.3.8 and
2.3.9 imply that the moment generating functions of standardized quantiles from distributions with
exponential tails converge to the moment generating function of a normal distribution. They also
imply that moment generating functions for standardized quantiles for distributions such as the

v Cauchy, Pareto and slash distributions do not converge; in fact from theorem 2.3.1 it follows that

they do not exist for any n.

Before closing this section we will extend our result on convergence of moments of quantiles
to finite linear combinations of quanﬁles. We will need the following lemma which is a trivial

extension of theorem 4.5.2 of Chung (1974).

Lemma 2.83.10. IfY,, n = 1,2,... converges in distribulion to X, and for some p > 0,
limsup, _, o E[[Y»|?] = M < o ihen for eachr < p

lim E[jYa|"] = E[|Y]'] < co.
n—oo

If r is a positive integer, then we may replace |Y,|” and |Y”| above by Y7, and Y”, respectively.

Proposition 2.3.11. Let ay and a_ be as in corollary 2.2.4. Suppose F is a cdf, 0 < ¢; <

. < ek <1, ¢; = F(q;), and (d/dz)F(z) [z==q;, = f(g:) > 0, 1 < ¢ < k. Suppose further that
ain = nc; + O(1), 1 < ¢ < k. Finally, let Z;, 1 < i < k have a multivariate normal distribution
with B{Z;] = 0, B[Z;Z;] = ci(1 — ¢;)/(f(:)f(g;)), 1 < ¢ < j < k. Then for any finite constants
by 1<i<k r=1,2,...

k r k ,
le E[(E bi(Xa,-n:n - q.')) } = E[( biZ{) ]

if and only if ay > 0 and a_ > 0.

Proof: If @y = 0or a_ =0 it follows from theorem 2.2.6 that E[| X;in [ =0 for 1 <i<n <
0o. Thus the necessity of @y > 0 and a_ > 0 is established.
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Assume ay > 0 and a— > 0. First we wish to show that the vector
V7 Xayoin — 41, - - - Xayain — qk) converges in distributién to (Zy,...,Zx). The proof of this is the
same as that of David (1980), pp. 255-257, for a result with F continuous everywhere. The basic
tool used in the proof is the result of Ghosh (1971) on Bahadur representation. From the proof of
proposition 2.3.6 we know that for 1 < i<k

lim sup E{y/n|(Xa,,:n — @)|"] = E[|Zi]"). (2.3.13)

Applying the Minkowski inequality repeatedly we have
limsup| E
n-—>0o

The proposition now follows from (2.3.13) and lemma 2.3.10. §

ray 1/r k
D < lim sup 3 bl BV Xarnm — gl

=1

X .
E bl‘\/-";(xa;,.m e q;‘)

t=1

k
< S |bi|lim sup (B[v/A|(Xasm — a:)I7]) "
—r OO

=1 n

§2.4 Remarks

In this section we will discuss assumptions it and i of the previous section and their
implications. We will also note the local conditions on FF which have been used by other authors to

show convergence of moments of quantiles.

We define

a = liminf = log(1 — F(z)) and o = liminf — log(1 — F(z)).
z—00 logz “z—00 z

(2.4.1)

. If & > 0 then for any X € (0, @) there exists zy such that if z > ) then 1— F(z) < z~>. Similarly,
if of > 0 then for any X\ € (0, o) there exists z} such that if z > z} then 1 — F(z) < e~*. Bickel
(1967) has used the existence of some € > 0 such that lim,—.c z¢(1 — F(z) + F(—2z)) = 0 to give
moment results similar to (but less precise than) theorem 2.2.6 and to get convergence of moment
results. Blom (1959), p. 44, has used a bound proportional to u®(1 — u)® (with a,b < 0) for |[F~!(u)|
as a condition to obtain a result similar to theorem 2.2.6 for first and second moments (this result
could be extended to higher moments easily). The results of section 2.2 showing when moments and
moment generating functions do and do not exist demonstrate that defining the precise values of d

and o' has some utility.

Another cohcept related to a is regular variation. See, for example, Feller (1971) or de Haan

(1970) for definitions and some elementary properties. The statement that 1 — F(z) < kz—* for
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some k, @ > 0 and large z implies that 1 — F(z) is bounded by a function hav.ing regular variation. ‘
If F(z) = 1 — z—* standard results in asymptotic extreme value theory imply that if 0 < a < oo
then the distribution function of Xp.n/nY/* converges vaguely to 1 —e™*". Pickands (1968) studied
asyfnptotic behavior of moments of sample extremes. His basic result was that if b,X,., has a

th

limiting distribution which has an r*" moment then E[(b,X,.n)"] converges to that value. This

implies that if 0 < a < co where a is as in (2.4.1) then E[X7,..] = O(n"/®).
We may define a (and ') in terms of the quantile function F~1(u); that is

.. e —log(l —u)
=] f— 2
“ 1‘1‘11_311 log F—1(u)
The value 1/a is what Parzen (1979) refers to as the tail exponent of f(F~1(u)); i.e., if f(F~!(u))

is regularly varying as u — 1, then the exponent of regular variation is 1/a.

The function A(z) = —log(1 — F(z)) is often referred to as the cumulative hazard function.
Its derivative \(z) = f(z)/(1 — F(z)) is the hazard rate. Suppose for large = that A\(z) is bounded
below by Bz°® where 8 > 0. If § > ~1 then a > 0, and if § > 0 then o/ > 0. On the other hand,
-suppose \(z) is bounded above for large = by 8z® where 8 > 0. If § < —1 then a =0, and if § < 0
then o/ = 0.

Other authors have used stronger local conditions than assumption v to obtain convergence
of moments of quantiles. Sen (1959) used the existence of f’ in a neighborhood of q to obtain a higher
order approximation (ﬁhan (2.3.12)) of F in that neighborhood. Bickel (1967) used the representation
F~Y(u) — ¢ = (u ~ ¢)/ f(z(u)) where z(u) is between g and F~'(u) and thus required f continuous

in a neighborhood of q.
When g is unbounded condition # may be written as
ii’. There exist 8, z¢ > 0 such that if ¢t > 1,z > 2o, then logg(tz) < t8log g(x).

We have chosen this condition to simplify the proof of lemma 2.3.2. This inequality implies that
if # > zo and t > 1 then g(tz) < g(z)*? which implies that g{x) grows at most exponentially for
large z. The crucial implication of #’ (which is not implied by the fact that g is bounded by an

exponential function) is that

(1/2)1logn + log g(\/ﬁ(m —g)) —nlogg(z) - —o0

uniformly for £ > z; for some z; > g as' n — oo; i.e., this implies that logg(\/ﬁ(x -q) <
ky/nlogg(z) for z > z,, n large and some k, which is exactly what we nced at the end of the proof

of lemma 2.3.2.



. Chapter 8
Expansions for moments of robust statistics

§3.1 Introduction.

A theorem showing asymptotic expansions for moments for a class of robust statistics is
given in this chapter. Included in this class are many statistics which may be written as a functional
of the empirical distribution function; i.e., they may be written as T(F,) where F,, is an empirical
distribution function based on n independent, identically distributed (iid) random variables with
underlying cumulative distribution function (cdf) F. The basic result is that the tail condition on
F given in chapter 2 which implies convergence of moments of standardized quantiles is found to
be sufficient to imply convergence of moments of /n(T(F,) — T(F)) to moments of expansions of
T(F,) about F' obtained using a version of Fréchet differentiation. The result gives higher order

approximations of moments if the defining functional has higher order Fréchet derivatives.

We begin with two short sections establishing some notation and definitions. Then we
present our basic theorem and ii‘.s proof. All of the theory of Fréchet differentiation needed is
presented in sections 4 and 5. In section 5 we apply our basic theorem to give general formulas for
first and second order approximations to the mean and mean squared error. Applications of these

results to L- and M-estimates are given in the next chapter.

§3.2 Notation.

Much of the notation needed for the remainder of the thesis is given in this and the following
section. In this séction we presenf some preliminary notation which will be needed in our discussion
of functional statistics and Fréchet differentiation. The definition of Fréchet differentiation and

corresponding notation will be given in the next section.

19
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R —the space of ;eal numbers.

cdf —cumulative probability digtribution function.

D —the space of finite linear combinations of one dimensional cdf’s.

G {or G;) —an arbitrary element of D; often a cdf or a difference of cdf’s.
F —an arbitrary element of D; usually a cdf.

X1,Xs,... —an iid sequence with cdf F.

8, —the cdf with mass one at z.

F, = (1/n)¥7_, éx, -—the empirical cdf after n iid observations from F.
Z; = §x, — F; a D-valued random variable.

[ - || —an arbitrary norm on D.

| + lloc —the sup norm on D; i.e., for G € D, || G ||oo= 8UP_co c2< oo | G(2) |-

D, =|| F, — F ||co, the Kolmogorov-Smirnov statistic after n observations.

§3.3 Functional differentiation and von Mises expansions.

Definitions pertaining to functional differentiation which will be needed are collected in this
section. We consider only Fréchet differentiation as we need bounds for functionals in our proofs
which are simply provided using Fréchet differentiation. Theorems applying Gateaux differentiation
are not studied in this work. Recent surveys on functional differentiation and its applications in

statistics are given by Reeds (1976), Serfling (1980), and Huber (1981).

Definition 8.3.1. Let D be the space of finite linear combinations of distribution funclions. A

functional Te(F; Gy, . .., Gk) with F fized which maps D* into R will be said to be k-linear if

=1

k
Ti(F;Gy,...,Gx) = /---/hk(F;xl,...,mk) I dGi(=:)

for some real valued hy(F;zy,...,xx) which is symmelric in z(,2q,...,2x. We let Ti(F;G) =

Ti(F;G,...,G). The function hy is said to be the kernel of Ty.

The function h; is usually referred to as the influence curve in the literature of statistics.
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Definition 3.3.2. Let || - || be a norm on D. Suppose T is a real valued functional defined on
F C D where ¥ contains a neighborhood of F € D; i.e., there exists § > O such that G €D and
| G ||< 6 implies F + G € 7. Let k be a positive integer. Suppose T;(F;Gy,...,Gj5) is a functional
defined for G; € D, 1 < i < j, which is j-linear, 1 < j < k. Let To(F;G) = T(F). I for
0<i<k,
Ri(F;G) _ T(F +G) =¥} _o Ty{F; G)/s!
e G II

goes to zero as || G || goes to zero then T is said to be k times Fréchet differentiable with respect
to the norm || - || at F. Furthermore, T;(F;-) is called the j*" Fréchet differential of T at F,
0<j<k

The usual candidate for T;(F; G) is

&
We will not say much about how to find T; and hj; examples for M- and L-estimates are given in

chapter 4.

In the case it considers, the conditions of the above definition are slightly weaker than thoée
of the standard definition of Fréchet differentiability given by Reeds (1976), p. 151. It would be more
appropriate to say that if T satisfies the conditions of definition 3.3.2, then T has a k! order Taylor
expansion about F with remainder of]| G ||¥). For the sake of brevity we do not do this. Because the
requirements are weaker, results which assume definition 3.3.2 also hold if the standard definition
of Fréchet differentiabilily is assumed instead. However, we do not need to show that the additional
conditions of the latter definition hold to apply our results. We obtain the standard definition of
Fréchet differentiation by adding additional assumptions to definition 3.3.2. First, we must have that
. for some € > 0 and any H € D with || H—F ||< ¢ the functional T is k times differentiable at H by
definition 3.3.2. We must also have that T;(H; Gy, . .., G;)~ T F;Gy,...,G;) — Oas || H-F |[—0,
and that T;(H;G,,...,G;) is uniformly bounded for | H-F ||< eif G; € D and || G; ||< 1,
1 < ¢ < j < k. We have not shown that any ‘interesting’ functionals are diflerentiable by definition
3.3.2 but are not differentiable by the standard definition. The proofs of differentiability given in
chapter 4 do not appear to have trivial extensions to show that the conditions of the latter definition

hold.

Serfling (1980), p. 217, gives a definition of first order differentiability comparable to
definition 3.3.2. He requires only that 7'(F; -) be defined on the space of differences of distribution
functions rather than on the linear space generated by distribution functions. This addition to the

domain of definition is found to be useful in lemmas 3.4.4 and 3.5.1 below. We can prove the same
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results given here if T is only defined for distribution functions by requiring that the results of these
lemmas hold. The given definition allows us to develop a slightly more pleasing theory and does not

really cost us anything in terms of our particular applications.

Fréchet differentiation is only one type of functional differentiation. Other notions
of functional differentiation which are useful in statistics are referred to as Giteaux and compact
differentiation. These definitions differ in their requirements on the remainder term, with Fréchet

differentiation having the strongest requirement.

See Reeds (1976) for more discussion on many of the above matters.

Definition 8.3.3. Assume X1, Xo,... are tid F and let F,, denote the empirical cdf of the first n
observations. Suppose the domain of definition of T includes all empirical cdf’s. Then the random

variable T(F,) will be referred to as a functional statistic. The ezpansion

k ‘ k )
T(Fo) =Y Tj(F;Fn— F)[3'+ Re(F; Fo — F) = 3 Tj;n/5! + Rin
=0 ‘ =0
will be referred to as the (k™ order) von Mises expansion of T(F,). The random variable R,n

will be referred to as the remainder term of the expansion.

The name von Mises expansion derives from the pioneering work of von Mises (1947) in
the application of functional differentiation to statistics. When F,, — F is replaced by an arbitrary

G € D the expansion is also referred to as a Taylor’s series expansion.

The primary applications of functional differentiation in statistics have becn to approximate
functional statistics using von Mises expansions, and then to extend results for these approximations
(which are usually easy to obtain) to the functional statistic. Some typical results obtained are
extensions of the central limit theorem, of the law of the iterated logarithm, of the theory of
Edgeworth expé,néions, and of the Berry-Esséen theorem (see Reeds (1976) and Serfling (1980)).
As an example of an application which we will use we consider the following central limit theorem

which is very similar to results given by Boos and Serfling (1980) and Serfling (1980).

Theorem 3.3.4. Suppos‘e F i3 a cdf and T is defined on F which contains F and all empirical
cdf’s. For G € D let || G |loo= SUP_cocz<oo | G(z) |- Suppose that T has a Fréchet differential Ty
at ' with respect to || - ||oo which is not identically 0. If 0 < 0* = E[(T\(F;éx, — F))’] < oo, then

VA(T(F,) — T(F)) converges in distribution to N (0,0?%) as n — oo. |

Proof: Since || Fp— F ||lo= Op(n_i/ 2) we have from the definition of Fréchet differentiability that

T(F,) — T(F) = Ty(F; Fy, — F) + 05(n*/2). (3.3.2)
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Since T} is linear in its second argument and F,, — F = Yo (6x, — F)/n it follows that
Ty(F;F, — F) = Z T\(F; 6x, — F).
:—l

By the assumption that E[(7(F;6x, — F))?] < oo it follows that E{T(F;éx, — F)] is well defined.
From definition 3.3.1 we see that E[Ty(F;6x, — F)] = E[h(F; X,)] - f hi(F;z)dF(z) = 0. Thus by
the central limit theorem for iid random variables with finite variance /nTy(F; F,, — F) converges

in distribution to N(0,o2). The contention now follows from this and (3.3.2). §

§3.4 A general moment result.

In this section we will state and prove a result which may be applied to show moment

expansions for a wide variety of robust statistics. We begin by stating the basic theorem.

Theorem 3.4.1. Suppose X1, X>,... are 1id with cdf I'. Let the empirical cdf of X;, 1 < i <n,
~ be denoted by Fn.. Let X1:n,-.., Xn:n denote the order statwtzcs of Xi, 1 < i < n. Suppose T

satisfies the following three conditions:
i. T is defined on ¥ C D where ¥ contains F and all empirical cdf’s.
ii. T i3 k times Fréchet differentiable at ' with respéct to the sup norm || - ||co

iii. There exist constants §, n, N, and m, all greater than zero, and ¢ € (0,1/2), such that for all
n2> N ifa, < en and by, > (1 — €)n then

l 7‘(1""‘) IS ”(l Xa,.:n | + Ian:n I +26)m.
Suppose F satisfies

iv. oy = liminf —_lg_g%;z_l’(m)_) > 0 and o_ = lim inf _—bl‘i ; i“”‘)
00 Z—00

0.

Recall that T; , = T;(F; F, — F) is the 7™ differential of T at F m the direction Fp, — F.

Under assumptions i--tv, for any posilive integer r

E(T(Fa) - T [(Z Tjnl3! ) ] + O(n—('+k_l)/2) | (3.4.1)

and

k
> Tjnld!

i=1

ra\ 1/7 :
'n)—T(F)I'])"'=(E[ D +oln+12), (3.42)




24 ’ 3. Expansions for moments of robust statistics

Remarks.

1) If we replace the inequality of % with

Xanm -8 < T(Fn) < Xb..:n +_5

and iv does not hold, then E[| T(F,) — T(F) |'] = oo by theorem 2.2.6. Thus iv is a necessary

condition in this case.

2) We will argue (not rigorously) in section 3.5 that if T is k + 1 times Fréchet differentiable then
the remainder term in (341) should be O(n~I(r+¥+1)/2]) where [Ja] denotes the greatest integer -
less than or equal to a. The general method of approximating E[(3 Tj,n)"] will also be given in the
section 3.5. The remainder of this section consists of a series of lemmas which will be used to prove

theorem 3.4.1. The fundamental lemma to be used is the folléwing:

Lemma 3.4.2. Suppose X1,Xs,... are itd with cdf F. Let T be a functional tphich 18 defined on
¥ C D where ¥ contains F' and all empirical cdf’s. Suppose also that T satisfies conditions i—iii

and F satisfies iv of theorem 9.4.1. Let

k
Ren = T(Fn) - T(F) - Z Tj,n/j!

Jj=1
be the remainder of the k'™ order von Mises ezpansion. Then for any positive integer r

E[(n"/2 | Rk |))] =0 as n— oo.

We delay the proof of this lemma until some preliminary results have been established. The
first two lemmas are the keys to proving our main results. Lemma 3.4.3 was first given by Dvoretsky,
Kiefer, and Wolfowitz (1956). It is very ﬁseful for obtaining uniform integrability results when using
Fréchet differentiation with respect to Il - lloo- Lemma 3.4.4 gives bounds for the differentials Ty(F; )
which will be needed. '

Lemma 3.4.8. Let D, ==|| Fa—F ||co be the Kolmogorov-Smirnov statistic after n iid observations

Jrom F. Then there exists c; > 0 such that for all n and x

P{ynD, > z} < c;e"?*",
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Lemma 3.4.4. IfT is k times Fréchet differentiable at F with respect to the a norm || - || on D,
then there exists A > 0 such that for any G € D, | Ti(F;G) |< A|| G ||*. .

Proof: Let § > 0. From the differentiability assumption we know that there exists ¢ > 0
such that if || G ||= €5 then | Ri(F;G) |[< 6 || G ||* and | Ry—y(F;G) |< 6 || G ||*. Note
that this holds even for k = 1. Since Ti(F;G) = Ry_i(F;G) — Ri(F;G) this implies that
| Tu(F;G) [ § || G| 1+ || G ).

Now suppose the contention is not true. Then there exist G; € D, ¢ = 1,2,... such
that Tx(F;G;) > ¢ || G; ||¥. Since for any a € R, G € D we have Ti(F;aG;) = oFTy(F; G;)
we may assume without loss of generality that Il Gi |loo= €s. Since for i sufficiently large

Tw(F; G:) > 857! (1 + €5) we have contradicted what we have shown in the paragraph above. |}

The following definition of uniform intcgrability and corresponding result are slight varia-

tions on those given by Breiman (1968), p. 91. The result here follows from Breiman’s result.

Definition 3.4.5. A sequence of random variables Y,, n = 1,2,... will be said to be uniformly

integrable if for any ¢ > 0 there exist A, and N, such that ﬁ.)r alln > N,

El| Yo | I{] Ya |2 A} < .

Lemma 3.4.6. IfY,, converges in distribution to Y as n — oo and Y., n=1,2,..., 13 a uniformly

tntegrable sequence, then E[Y,] — E[Y] as n — oo.
Lemma 3.4.7. For any positive integer r, (nl/ ’D,) is uniformly integrable.

Proof: This result follows from lemma 3.4.3 and definition 3.4.5 after applying integration by
parts. |11 ,

Lemma 3.4.8. Suppose F is a cdf. Suppose T is defined on ¥ C D where F contains F and
all empirical cdf’s. Suppose T 1is k times Fréchet differentiable at F with respect to the sup norm
I - lloo- Recall Ty = Ti(F; Fy, — F) is the k* differential of T(I") evaluated at ¥, — F. Ifr is a

positive integer, then (n*¥/2T} ), n = 1,2,..., is uniformly integrable.

Proof: Trom lemma 3.4.4 we know that there exists A > 0 such that | T} ,, |< ADE. From lemma

3.4.7 we know that (n"/ 2Dk) is uniformly integrable and the contention follows. §
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Lemma 3.4.9. Suppose r is a positive integer, and X7, and YT, are uniformly integrable. Then

s0 s (Xn +Y,) .

Proof: Since | X, + Y5 |"< 2"(max(] X, |, | Y» [))” it follows that

E[| Xn+ Yo " I{| Xn + Ya "> A} <E[2" | X, | I{| X "> A27"}]
+E[27 | YL [T I{| Yo |T> A277}].

Under the hypothesis, for any § > 0 there exists A such that the right hand side of the above is less
than § for n sufficiently large. 1 '

Proof of lemma 8.4.2: Since the remainder Ry = of]| Fr — F ||£,) and || F, — F lloo== Op(n=1/?)
it follows that nk/sz,n goes in probability to 0. By lemma 3.4.6, the only thing that remains to be
shown is that (n*/2 | Ry, |)" is uniformly integrable. We let 0 < v < 1/2, c> 0, and let r be a

positive integer. We will use the decomposition
(n*/2 | Ry |) = (n*/% | Rin |) I{Dn < en™ "} + (0¥ | Ry ) I{Dy, > en™7}. (3.4.3)

The first term of (3.4.3) will be considered first. Choose § > 0. From the definition of Fréchet
differentiability we may choose €5 so that for all G with || G ||o< €5, F + G € 7 and | Ri(F';G) |<
Il G|k, 6. Let N > (c/es)/7. If n > N then en~7 < €5 and

n*/2 | Ry m | I{D,, < en~7} < 6n*/2DE,

From lemma 3.4.7 it follows that (n*/2 | Ry, |) I{Dn < en~7} is uniformly integrable,

Now we consider the second term of (3.4.3). Since Ry, = T(F,)— T(F)— E;f:l Tin/3! it
is sufficient (from lemma 3.4.9) to show the uniform integrability of (n*/2 | T(F,) |)' I{Dp > en™"},
(n*/2 | T(F) |) I{Dp > cn™"} and (n*/2 | Tj . ) I{Dn > cn™ "}, 5 = 1,.. ., k.

By lemma 3.4.3 (n*/2 | T(F) |)’ I{Dn > ¢n~7} is uniformly integrable.

From lemma 3.4.4 we know that | T, |< ADJ for some A > 0. Applying lemma 3.4.3
and integration by parts we see that

E[(n*/? | Tjn ' I{Dp > en™7}] < An"=D2E[(n!/2 D, )" I{n'/2 D, > en'/?7}]

< A"nr(k_j)/2(‘0[ exp (_2c2n1—2'y)cj1njr(l/2—‘1)

oo .
+ / jrzj'_lcle““adm .
ent/3-v
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The first term inside the brackets times the factor outside the brackets goes to zero as n — oo.
Letting y = 22% we can find positive constants c; and c3 such that the second term inside the
brackets times the factor outside is less than or equal to
. o0
cqnr =32 / YDy gy
cant—2v )
If n is sufficiently large, a is a positive integer greater than (57 — 2)/2, and € = 1 — 2y > 0, then
this is less than
. a
can”(5=9)/2 gl exp(—c3n€) Z(cgn‘)j/j!
j=0
which goes to zero as n — co. Thus E[(n*/2 | Tj , )" I{D, > cn=7}] goes to 0 as n — oo, j =
1,2,... k.

Finally we consider (n*/2 | T(F,) ) I{Ds > cn~7}. We let ¢ and § be as in assumption
i of theorem 3.4.1. Let a, = [n¢] and b, = [n(l — €)] + 1. Let 8 € (0,1/4) and consider

rm
(nk/z(l Xooim | +6)) I{D, > en™"}
= (n*%(| Xon | +6)) H{Dn > en™ H{| X |> F7H(1 = € + enP)}
+ (#*2( Xouin | +8)) H{Dn > en™TH{| Xppin |< F7H(1 = €+ en?)}

The first term is uniformly integrable by lemma 2.3.2. The second term is boundéd by
(n"_/‘z(F_l(l — e+ cnP) + 8))"P{Dn > cn7}. It goes to zero by lemma 3.4.3 since y < 1/2.
By lemma 3.4.9, (n*/%(| X;..m | +6))" I{Dn > cn~7} is uniformly integrable. Similarly
(n"/2(| Xanin | +6))"n I{D, > ¢n7} is uniformly integrable. By lemma 3.4.9
it follows that (n*/2(| Xa,in |+ | Xpom | +26)) I{Dn > .cn"q} is uniformly integrable.
By assumption 122 it follows that (n"/ 2 T(Fn))'l {Dn > en™"} is a uniformly integrable sequ;ance. 1

Finally we prove our main theorem.

Proof of theorem 8.4.1. Since
k
T(Fa)—T(F) = Z Tjn/5' + R (3.4.4)
F==1

(3.4.2) follows from Minkowski’s inequality and lemma 3.4.2.

Using (3.4.4) and expanding we have |

r

, K r—i
E(T(Fa) = T(F) 1= (Z)E B D T,-,,./j!) :

=0
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'])('—i)/'

From lemma 3.4.8 it follows that E[| Tj,n ||/ = O(n=%/%) for j = 1,2,...,k. From this and
lemma 3.4.2 it follows that '

For 1 < i < r it follows from Holder’s inequality that

k
Z Tjm/3!

j=1

E (Z T,-,,,/j!)‘ < (B[] Ren rn"”(w[

j=1

k
> Tjn/it

j=1

ray (r—9)/r -
(E] R, rl)""(E[ D — ofntise=ira)

and since tk+r—¢ > r+ k—1(3.4.1) follows. &

'§3.5 Calculating moment approximations.

In the previous section we have proven convergence of some moment approximations. We
will now present some results on functional differentiation and von Mises expansions which are useful
in applying this theory to actually calculate moment approximations. We also give formulas for bias,
and first and second order mean, squared error approximations in terms of the first three functional

derivatives of a statistic. These formulas will be applied for L- and M-estimates in the next chapter.

We assume throughout the following that X;, X5,... isa seduence of iid random variables
with c¢df I and that T is a functional defined in a neighborhobd of F and for all empirical edf’s
which is k times Fréchet differentiable at F' with respect to || - ||co. It is a simple consequence of

definition 3.3.1 that
Ti(F; Gy + Gy, G, ..,Gi) = Tu(F; G4, Gs, . .., Gk} + Tu(F; G}, Ga, . .., Gx) (3.5.1)

and

Tk(F; aG’l, Gz, veoy Gk) = aTk(F; Gl, Gg, ooy Gk) (352)

Lemma 3.5.1 is used in the proof of lemma 3.5.2 which shéws that the kernels of these

Fréchet differentials are bounded when differentiation is done with respect to the sup norm.
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Lemma 3.5.1. Suppose k is a positive integer and T' is a functional defined on 7 € D which is
k times Fréchet differentiable at F' with respect to a norm || - || on D. Then for j = 1,2,...,k,

Ti(F;Gy...,G;) goes to zero uniformly as max;<i<; || G; || goes to zero.

Proof: Fix j and m such that 1 < m < j < k. Assume that if {Gy,...,Gx} contains exactly m—1
distinct elements then T;(F; G\, ..., G;) goes to zero uniformly as max; <i<; || G; || goes to zero.
Now assume that {G},..., G} contains exactly m distinct elements and that G, # G3. By (3.5.1)
and the symmetry of T;(F;-) it follows that

2
T:.,'(F; Gy 0 G]) = (1/2)(TJ(F, G1+ G2, Gy + G,Gs,. .., GJ) - Z 13(1’1; Gi,G;, Gy, ..., Gj).)
=1
Since T;(F;-) on the right hand side of this equation has m — 1 distinct arguments in each case, it
follows that they all go to zero uniformly as max;<;<; || G: || goes to zero. The contention follows
for m = 1 and arbitrary 7, 1 < 5 < k, by lemma 3.4.4. For arbitrary j, 1 < j < k, the result

follows for 1 < m < j by induction on m. 1

Lemma 3.5.2. Let k be a positive integer. Suppose T is k times Fréchet differentiable at F with
respect to || - ||co- Then the kernel hy of Tk is bounded.

~ Proof: The proof uses contraposition. Suppose h(F; -) is not bounded. Then there exist z;m,
1 < i <k, such that he(F;zim, - s Thom) > m**l m=1,2,.... Let Gip = 2., /™- This implies
that Ti(F; Gym,...,Gxm) > m and that maxi<j<k || Gjm ||oo= 1/m goes to zero as m — oo. This

contradicts lemmg 3.5.1. 1

We let
Zi(z) = 6x,(z) — F(x). : © (3.5.3)
Since
Fo—F =n"! f_: Z; (3.5.4)
' =1

it follows from (3.5.1) and (3.5.2) that
” n ’
Tipn = Tu(F; Fp — F) =n"% 3" .. Y~ TW(F; Z,,,..., Z;,). (3.5.5)
l.1=1 i’.=1
Since hy is bounded we know that Ti(F; Z;,, ..., Z;,) is a bounded random variable. If T has a th

differential and r is a positive integer then by using (3.5.5) and expanding we find

E((Y T5.n/dt)] = 3BT w P OTi00(F; Zas o Ziy )50, (35.6)

J==1 l=1
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where the sum is appropriately defined (explicit examples of (3.5.6) will be derived more carefully
in the proof of theorem 3.5.3). Symmetry arguments tell us that we need only compute a ‘few’ of
the terms of the right hand side of (3.5.6) to get E[(Zf:1 T;n)]. The following lemma shows that
even most of these terms are zero.

Lemma 3.5.8. Suppose at least one of the indices iy, occurs exactly once in

H Tj(l)(F3 Zipysenn Zilj(l))/j(l)!'

=1

Then

E[II T.‘i(l)(F; Ziu’ ceey Zi:,’(:))/j(l)!] =0.
=1

Proof: Without loss of generality we assume ¢1,; = 1, and if (I, m) £ (1,1) then ¢, 7 ¢1,;. Let
7 = j(1). For a given i we condition on Z;,,, = 2z, for (I, m) 7% (1,1). It will suffice to show
E‘[Tj(F; 741,219, .. o zlj)] = 0.

By definition

3
E[T;(F; Z1, 212, - - -» 215)) = E| / / hi(Fizy,. . 2:)dZ(z) [ deul=)-
1=2

Since h; is bounded by lemma 3.5.2 and all of the measures involved are bounded we may switch

the order of integration to obtain

E[Ti(F; 21, 2,5, - - - 2iy;)] = / . /E[/ hi(F;zy,...,2;)dZ(z1)] II dzy(z).
=2
But
E[/ hi(F;zy,...,z;)dZi(z1)) = E[h;(F; X1, 29, . .., z;)] - /hj(F; Tiy..., 25)dF(z) =0

and the contention follows. §

Using (3.5.6) and lemma 3.5.3 we can show by counting the number of terms of various

types that for &£ > 1

BI(T(Fy) — T(F)] = B3 Ty 1] + O(n-Le-rr+1/o] (35.7)

. i=1
if T is k + 1 times Fréchet differentiable. This was suggested after the statement of theorem 3.4.1

and will be shown for some particular cases in theorem 3.5.4.

We are now prepared to give formulas for first and second order mean and mean squared

error approximations.



3.5. Calculating moment approximations. : 31

Theorem 3.5.4. Suppose X;,X,... are 4d with cdf F and that T is a functional defined in a
neighborhood of F and for all empirical cdf’s. For the remainder of this proposition if we say T is
k times Fréchet differentiable, we mean at F with respect to || - ||oo; also implicit in this statement

will be that the approzimation

k
E((T(Fa) = T(F))'] = B{(D_ Ty;n/3!)] + o{n=(+*=1/)

j=1

is valid. Define Z;i(z) = 6x,(z) — F(z) as before.v If T is (once) Fréchet differentiable then

E[T(F,) — T(F)] = o{1/v/n) (3.5.8)

and

B(T(Fy) — T()?] = “E{(T2(F; Z0)?] + of1/n). (3.5.9)
If T is two times Fréchet differentiable then

E[T(F,) -—'T(F)] = %E[Tg(ﬁ‘; Z1,7Z4)] + of1/n). (3.5.10)

If T is three times Fréchel differentiable then

E(T(F,) — T(F))?] =%E{(T1(F}Zl))2] + %E[TJF; Z\)To(F; Zy, Zy)]

+ 5 BT (F; 21, 2]+ oy (BIT(F; 20, Z2)]) (35.11)

1
+ —T—‘;E[TI(F; Z\)Ts3(F; 21, Za, Z3)] + o(1/n?).

Proof: Assume T is one time Fréchet differentiable. By assumption
E[T(Fy) — T(F) = E[Ty(F; Fa — F)] + o{1/v/7).

From (3.5.1)—(3.5.5) we have
n
E[Ty(F;Fn — F)] = E[n™' ) Ty(F; Z:)).
=1
Since E[T}(F; Z;)] exists and is finite we may interchange the order of integration and summation.
From lemma 3.5.3 we have E[T((F; Z;)] = 0 and (3.5.8) follows.
Similar arguments justify the following calculation:

E((T(Fs) — T(F))’] = E[(T4(F; Fo — F))*] + o(1/n)
=n"2 Y ) E[Ty(F; Z)Tu(F; Z;)] + o(1/n).

1=1 =1
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By symmetry we have E[(Ty(F;Z:))?] = E[(TW(F;Z1)?%). By lemma 3.5.3 we have
E[Ty(F; Z;)T:(F; Z;)) = 0 for j 54 i, 1 < i < n. Thus we have shown (3.5.9).

To obtain (3.5.10) we use a second order approximation:

E[T(F,) - T(F)] = B[T3(F; F,, — F) + (1/2)T2(F; Fo. — F)| + o(1/7)
= (2n)"'E[T(F; Z1, Z1)] + o(1/n).

To obtain (3.5.11) we use a third order approximation:

E[(T(F,) — T(F))?] = E[(Ty(F; Fn — F) + (1/2)T2(F; F, — F) + (1/8)T3(F; Fn — F))*] + o(1/n?)
= E{(Tu(F; Fn — F))?] + B[Ty(F; F — F)Ty(F; Fy — F)]
+ (1/3)E[Ty(F; F, — FYT3(F; Fp, — F)] + (1/4)E[(T2(F; Fn — F))?] + o(1/n?).

The terms which ‘disappear’ in the last line are o(1/n?) from lemma 3.4.8 and Holder’s inequality.

We have already derived E[T(F; F,, — F'))?] above. We continue with the other terms.

n n n
E[Ty(F; Fo — F)To(F; Fr — F) = n"2 Y > " E[Ty(F; Z:)Ta(F; Z;, %))
=1 j=:1 k=1 ;

= n"?E[Ty(F; Z)T2(F; Z1, Z1)].

n

n n n
BTy (F; Fu— F)T3(F; Fo — F)l =07 > N~ N~ D B[TW(F; Z)Ts(F; 23, 7k, 1)) -

=1 l==1

a

i=l j=1

- n_4(n) 2.3 B[Ty(F; Z)Ta(F; 21, Za, Za)] + o{1/n?).

[

E[(To(F; Fpr — F))?] = n—‘*(n(n —INE[To(F; Z1, Z4)])* + (’2') -4 - B[(Te(F; Z4, Z2))2]).

Equation (3.5.11) now follows from these calculations. §



Chapter }
L- and M-estimates

§4.1 Introduction.

In this chapter we will apply the theory of the previous chapter to derive expansions for
moments of many L- and M-estimates. In particular, we will give first and second order approxima-
tions for the mean and mean squared error in each case. Applications of these approximations will

be studied in the next chapter.

We now note some of the limitations of the theory of chapter 3 in applications to L- and
M-estimates. Most of the limitations should not be of great concern to those wishing to consider

robust statistics.

The first limitation is that the influence function (kernel of the first differential) must be
bounded. This is not an important limitation fof robustness since it implies that changing a small
proportion of the observations, in general, changes the value of the statistic by at most a limited
amount. For L-estimates this limitation means we must exclude a positive proportion of the extreme

observations from the calculation of the estimate.

For M-estimates we have the requirement that the influence function be non-decreasing
as well as bounded. We need this to give the quantile bound required by theorem 3.4.1. This
eliminates M-cstimates with redescending influence curves, which is an unfortunate limitation.
Another limitation of the present treatment is that we have not considered simultaneous estimation
of location and scale for M-estimates. Eynon (1982) uses some of the results given here to treat this

case.

Finally, the condition of Fréchet differentiability imposes ‘strong smoothness’ conditions

on the estimators to. be considered. Tor instance, quantiles are not Fréchet differentiable, and the

33
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M-estimate referred to as Huber’s proposal number one is only once Fréchet differentiable. ‘Examples
of functionals which are not Fréchet differentiable and efforts to patch up our theory in these cases
are discussed in section 5.4. We note difliculties in showing that the standard definition of Fréchet
differentiability holds in cases where we show our definition of Fréchet differentiability holds after

the proofs of proposition 4.2.5 and lemma 4.3.5.

§4.2 Theory for L-estimates.

We will now apply the theory of chapter 3 to develop a theory of moment convergence for
L-estimates. The results on moment approximati‘on contained in this section are summarized by
(4.2.1), lemma 4.2.4 and proposition 4.2.6. The L-estimates we will consider are defined for any cdf
F by |

1
T(F) = / J(u)F~(u)du (4.2.1)
-Jo
when the integral is well defined and J is a real valued function. We do not use the more general
version .
1 ) m
T(F)= / J(w)F Y (u)du + Z a; X[cin]+1:m : (4.2.2)
o =

since then T would not be Fréchet differentiable; this is discussed in section 5.4. Recall that a result

on the moments of E:f__l @i X[c;n]+1:n Was given in proposition 2.3.11.

Note that the functional of (4.2.1) is not defined on all of D since not all elements of D have
an inverse. Thus before showing the Fréchet differentiability of the functional defining an L-estimate,
we must extend the definition to D. The concept of bounded variation and some simple properties
related to it will be needed for this definition and for the proof of Fréchet differentiability for both

L- and M-estimates.
Definition 4.2.1. A function g is said to have bounded variation on [a,b] of

: n
Vabssup{ZIg(zg)——g(x,-_l)l in<owanda <z < - < 2y Sb} < oo,

i=1
I

llgllrv=_lim Va < oo,

b oo

we say that g has bounded total variation.
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If || ¢ |lrv < oo then g is bounded and may be written as the difference of two bounded,
monotone non-decreasing functions. Thus for any function of bounded variation there is a cor-
responding finite signed measure. When we write an integral with a differential element dg where g
is a function of bounded variation this will mean inbegr.a.tion is to be done with respect to the finite
signed measure corresponding to g. If g is continuous and has bounded variation on {a, b] then it is

also uniformly continuous there. The following lemma is a special case of a result given by Rudin

(1964), p. 122.

Lemnia 4.2.2. Suppose f and g are real-valued functions of bounded variation on [a,b] and f is

also continuous. Then

b ’ b
[ 0= 1000 - st - [ oar.

Definition 4.2.3. Let J be a function of bounded variation on [0,1] which is 0 outside of [0, 1].
For any G € D where the integral is well defined we let

T(G) = /_ Z zd /o e J(u)du.

If Fy, is an empirical cdf generated by a set of n #id random variables, then T(F,) is said to be an

L-estimate.

We will be interested in the case in which J is zero outside of some interval [§;,1 — &3]
where 0 < §; < 1—8; < 1. In this case we now show that if F' is a cdf then T([F) of definition
4.2.3 has the same value as T(F) of fol J(w)F~1(u)du.

Lemma 4.2.4. Suppose F is a cdf and J i3 a function of bounded variation on [0, 1] which is zero

outside of some interval [6,,1 — &3] where 0 < §; < 1— 63 < 1. Then
1 oo F(z) )
/ J(u)F Y (u)du = / xd( / J (u)du).
0 —oo 0

Proof: We begin by rewriting the single integral of the lemma as a sum of two double integrals.

0

, /0 l J(w)FHu)du = ~ /OF(O) J(w)

1 F~Y(u)
dzdu + / J(u) / . dzdu. (4.2.3)
F1(u) F(0) 0

We will not show here that [, Fl.(:;z J(u)du is a function of bounded variation; the argument is similar
to one given below in the proof of proposition 4.2.5. Let a be such that F (¢) < 6y and |a |< o0 If

a < 0 the first of these terms may be rewritten using first Fubini’s thecorem and then lemma 4.2.2
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F(0) o 0 rF(z)
- / J(u) / dzdy = — / / J(u)dudz
F(a) F=t(u) a JF(a)

] A )
= /:’ xd([,F(z) J(u)du). -

The result follows by using (4.2.3), this expression, and the analogous expression for the second term

of (4.2.3). &

For the following proposition recall the definition of a kernel (definition 3.3.1) and our
definition of Fréchet differentiability (definition 3.3.2) which has weaker conditions that the standard
definition. Our proof is an extension of the analysis of Boos (1979); his proof also appears in Serfling
(1980), pp. 281-282. Boos’ proof is for the first differential. Note that when we say J is continuous
a.e. with respect to F~—1 for some cdf F', we mean with respect to the measure corresponding to the

monotone function F—1,

Proposition 4.2.5. Let J be defined on [0,1] with J(u) = 0 for u < §; and u > 1 — 8 where
0<6 <1—63 < 1. Let 7 be the elements of D for which

T(G) = /j: zd(‘/(;c('Z) J(u)d'u)

is well defined. Suppose F € ¥ is a cdf. Let k be a positive integer. Let JU) denote the j* derivative
of J where it exists, j = 1,2,...,k. Let J© = J. Assume that JU), j = 0,1,...,k—2, are bounded
and absolutely continuous. Assume that J**=1) is bounded and continuous a.e. with respect to F~1.
Then T 1is k times Fréchet differentiable at F with respect to || - ||co. For j = 1,...,k the kernel of
the j* Fréchet differential of T at F with respect to || - |joo %3

hi(F;zy,. .., 25) = — /m . JU=(F(y))dy. (4.2.4)

We delay the proof of this proposition. For the remainder of the section when limits of

integration are not given explicitly, they will always be +o0.

Proposition 4.2.6. Let F be a cdf such that

Z—00 log T T400 log z
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Let J(u) be defined on [0,1] with J(u) =0 for u < §; andu > 1 —6; where 0 < §; <1—6 < 1.
Let 7 be the elements of D for which

T(G) = /_ : a:d( /(; o J (u)du)

18 well defined. Let k be a positibe integer. Assume that J), j =0,2,...,k— 2, are bounded and
absolutely continuous. Assume that J**=1) 45 bounded and continuous a.e. with respect to F~!. Let
Tjn denote the 7% Fréchet differential Ti(F;Fon—F) of T at F, j = 1,2,...,k. Then for any

positive integer r

B[(T(Fa) - T(F))] = E[(f: T,-,,./ﬂ) ] + ofn=(r+4=112), (125)
If £ > 1 then ' |
E[T(Fa)— T(F)] = o(1/v/n) (4.2.8)
and : : (

E[(T(F,) — T(F))?]) = % //(F(min(a:l, z2)) — F(‘:cl)F(:vg)) II J(F(z:))dz; + o(1/n). (4.2.7)

If £ > 2 then -
E[T(F,) — T(F)] = 2% f F(z)(1 = F(z))J WD(F(z))dz + o(1/n). (4.2.8)
Finally, if & > 3 then _
e - 7)) =1 [ [(Ftmintes,22) ~ Fle)r(en)) TT IFtoias:

=1

+ % [ [(Ftmintas,20) — Fe)F(en) )1 ~ 27(ea))

J(F(zl))J(‘)(F(zg))dmldwg

+ #//(F(min(zl,xz)) - F(xl)F(Zz)) i]_:__[l J(_l)(F(zi))dii (4.2.9)
+ s Pt — Fens )

tog / / (F(min(\.;c],:cz)) - F(zl)F(xg))ﬁ’(w2)(l ~ F(z2))
J(F(zl))J(2)(F(x2))dz1da:2
+ o1/n?).

The remainder of this section consists of the proofs of propositions 4.2.5 and 4.2.6.

We will need the following version of Taylor’s theorem which can be found in Hardy (1952)

to prove Fréchet differentiability for both L- and M-estimates.
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Lemma 4.2.7. If f has a finite k*® derivative at z then

’ k
fle+t)=Y fO)0 51+ o] t |¥).

7=0

Proof of proposition 4.2.5. To obtain differentials we recall (4.2.4) and definitions 3.3.1 and 3.3.2. If
G;€D,t=12,...,3,1 < j < k, then the following interchange of integration is justified under

the assumptions of the proposition:

1Fs G = [ (- J(f-”(F(y»dy)f[dG.-(z.-)

=1

- / / (‘/ (H "z-(y))J G- "(F(y))dy) I 4Gi(=o)

t==1

: (4.2.10)

/ (II f 62.(4)dG; (z.))J‘J O(F(y))dy

=1
- / (I[ G.-(y))J U=1(F(y))dy.
i=1
Let 0 < € < min(éy, 62). There exist a and b such that

—co<a< F Y6 —e) < F7'(1-63+¢€) < b< oco.

If || G lloo < € then for < a and = > b we have

F(z)+G(z)
/ f J(i)du = 0.
F(2)

For the remainder of the- proof we assume that || G lloo < €. We now show that f P(ZH?(E) J(u)du

F(z)
has bounded total variation. For n < o0, a < 20 L ...<xpn < b
n F(z:)+G(z:) F(2i1)+G(2i-1)
/ J(u)du — / J(u)du
i—1|VF(=:) F(zi-1)

n

AF(2)+G(z:) P(z:)
> / | J(u)du - fF J(u)du

i=1 F(z;—1)+G(zi-1) Zi1

<HJIIooE(2IF(x:) F(zi—1) | + | G(=i) - Clait) -

=1

(4.2.11)
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Since F, G € D they are of bounded variation. It follows from (4.2.11) th at f F(z)+G(z) J(u)du has
bounded variation. We may now rewrite T(F + G) — T(F) as

T(F+G)—T(F)= / xd( /o el J (u)du) - / :z:d( /o " J (u)du)
- / ~ a:,d( /F }:(:HGM J(u)du) | | (4.2.12)
_ / zd( / reree J(u)du). |

Applying lehma 4.2.2 we obtain
F(z)+G(z)
T(F+GQ)—-T(F)= / / J(u)dudz. (4.2.13)

For 0 < ¢ < k equations (4.2.10) and (4.2.12) imply that the remainder of the :™ order Taylor
b
'/“. (

F(z)
< /‘ Ir (:)+G(z) J(w)du + 35, GHa)T-I(F ())/4!

G(z)
where the integrand of the last line is defined to be 0 when G(z) = 0. Thus to show that T is &

approximation is

F(z) i -
| R(F;G) | = / J(u)du + _ZGJ(z)J"—”(F(x))/ﬂ)dz

P(z)+G(z)

dz || G |5

times Fréchet differentiable at F it suffices to show that, for 0 < ¢ < k, as || G || goes to zero

/: Wa,i(z)dz = /a

Let ¢ be an integer with 0 < ¢ < k. Let A = {z : J¥)(u) is continuous at u = F(z),
0 <7<k} If € Athen Wg,i(z) = 0 as || G ||o— O by the version of Taylor’s theorem given

fﬁi‘)ic(z) J(u)du + Yi_, GF(z)JG-D(F(z))/!
G'(z)

dz — 0. (4.2.14)

in lemma 4.2.7. From the a.ssumptlon that J(*=1) is continuous a.e with respect to F~! it follows
that the complement of A has Lebesgue measure zero. Under the assumptions, we have by Taylor’s
theorem that - .

F(z)
L7 s 3 ait- O < e G

F(2}+G(2) =

Thus Wg,; can be bounded by 2 || JO6=1) ||,. It follows that from the dominated convergence
thcorem that for any sequence G, such that | G, |l goes to zero as n — oo the integral
I We, iz)dz — 0. By a standard theorem from analysis it follows that [ Wg (z)dz — 0 as
1Gllo—0. §
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Note that if J*~1) is discontinuous at u; € (0,1) then for any ¢ > 0 there exists a cdf H
with || H — F ||co< € and H~!(u) not continuous at u;. Thus the set A of the above proof is, in
this case, not of measure zero and we may not apply the dominated convergence theorem as above.
This means that we cannot extend this proof diréctly to show Fréchet differentiability under the ‘

standard definition when J(*=1) is not continuous.

Proof of proposition {.2.6. Let X;,X5... be iid observations from F. Let F,, be the empirical cdf
of the first n observations and let X;,, denote the i*h order statistic of the first n observations,

1 < ¢ £ n. We may write
[(1—6a)n}+1 i/n
| T(F,) = ;=%;n| Xin /( i/ J(u)du.
This implies -
| T(Fa) |< (| X{sinpen | + | Xp(1—ba)n]+1:n DI oo -
Thus (4.2.5) follows from proposition 4.2.4 and theorém 3.4.1.

We now wish to apply theorem 3.5.3 to show the remaining results. Equation (4.2.8) follows
from (3.5.8). Given the restrictions of this proposition it is easy to justify all changes of order of
integration in the following calculations. Derivation of the first formula is fairly detailed; steps are

left out of subsequent calculations. In each case, we begin by applying (4.2.10). Recall Z; = §x, —F.

s 200 = [ ([ (e - Feparenes) ar)
— [ [ [ 62~ Fe)ss(a2) — Plon)irts) TT S(PGoiia

=1

= / / / (5:;(:51)514(-'02) = by(21)F(22) = 8y(22)F (1) + F(z1)F (“2))

dF(y) [[ J(F(z:))dz:

=1

— f f (F(min(zl,a:g)) - F(:cl)F(a:z)) f[ J(F(w:))dsi.

f==1

Equation (4.2.7) now follows under the given conditions. This is the usual first order variance

approximation for L-estimates. We continue with the bias approximation. .

BT (F; 23, Z0)] = [ [ (8(e) ~ Pl O () dF(s)s
= / F(z)(1 — F(z))JO(F(z))dz.
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‘Equation (4.2.8) now follows under the given conditions. Finally we do the remaining calculations

needed for the second order mean squared error approximation.

BIT(F; 20023 21, 20 = [ [ [(6)(00) ~ Plon)6y o) - Flaa)?
_ | - I(F(z1)) T (F(22))dzy dzodF(y)
-[/ (F(min(:cl,:cg)) - F(z;)F(zz))(l — 2F(z,))
J(F(z1)) I O(F(z2))dzy ds.

E[(Tz(F;Zl,Zz))21= / / / / f[ (ﬁ(éyj(:c,-)——F(z‘i))J(1)(F(:vi))d:v.-)dF(yj)

F=1 \g§==1

- / / (F(min(ml,zg))—F(zl)F($2))2f_[ JO(F(2;))dz;

=1

E[TI(F; Zl)T;;(F; Zl, Zz, Z2)] = //(F(min(zl, 122)) - F(zl)F(zz))F(Iz)(l —_ F(zg))
J(F(z1))J O F(z2))dz, dz,.

Equation (4.2.9) now follows under the given conditions. §

§4.3 Theory for M-estimates.

In this section we will show the I'réchet differentiability of many M-estimates and give
the theory for first and second order variance approximations. Boos and Serfling (1980) have given
conditions under which an M-functional is one time Fréchet differentiable. We give a somewhat
different proof for conditions under whigh' an M-functional is one, two, or three times Fréchet

differentiable.

For notational convenience we shall write [ ¥dF instead of [ ¥(z)dF(z). In general
when the argument of a function in an integrand is left out it will simply be the running variable (in
this case z) and when the limits of integration are not given they will be +oo. Otherwise arguments

of functions and limits of integration will be explicitly given.

Definition 4.3.1. Let ¢ be a real-valued function on R. An M-estimate corresponding to ¢ s
T(F,) where T(F) is any functional which sati:‘;ﬁes

0= [ 4o - T(r)aF(E)
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on its domain of definition.

We now give a heuristic method of finding differentials for M-estimates. The usual candidate

for the 7*! differential is
d
T; (F G)= T(F + hG) |h=0 - . (4.3.1)
For any G € D we define

Ag(t) = / Y(z — t)dG(x).

Let 7 denote the domain of definition of T. For G € ¥ we have Ag(T(G)) = 0. Noting that

)\F+hG(t) = XF(t) + hXG(t)

we have thus
0 = Mp(T(F + hG)) + kXG(T(F + hG)).

Differentiating this with respect to h we obtain
0 = Np(T(F + hG)) = T(F + hG) + XG(T(F + hG)) + WNG(T(F + hG))‘—i%T(F +hG).  (432)

Setting h = 0, this and (4.3.1) yield

Aa(T(F))

Al A == awy

(4.3.3)

Differentiating both sides of (4.3.2) with respect to h again we obtain

0 =X\}(T(F + hG))( —T(F + hG))2 + Np(T(F + hG)) T(F + hG)

dh?

P

+2NG(T(F + hG)) - T(F + hG) + hNL(T(F + hG))( T(F + hG))

+ RNG(T(F + hG)) T(F + hG).

dh?

Setting h = 0 in this equation and applying (4.3.1) and (4.3.3) we obtain a candidate for the second

differential:

Ne(T(F)Tu(Fs G)):nzz)x) T Ty(F; G)
T(F
ATMWN(T(F)  (Ae(T())NE(T(F)) (4.3.4)
(N (T(F))? i)

TQ(F; G) -

= 2
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The candidate for the third differential is obtained in the same fashion:

Ty(F;G) = —( BEE)TL(F; G))* + IN(T(F)T(F; C)Ta(F; G)

+ BNL(TE)TL(F; C))? + SN (T(F)) Tl F; G))(x'F(T(F»)—‘
_ Q(TENNETR) | OalTF) o TEPNT(EF)

(N (T(FN)* (\p(T(F))*
_ 3BeTEN NI OG(TINPNGT(F) _ A TF)NG(T(F)?
(N (TN (N (T(F))) (RTEN?

(4.3.5)

We will give an example of how to obtain kernels from (4.3.3)—(4.3.5). We consider T2. A
bilinear function T3(F; Gy, G2) satislying To(F; G) = T2(F; G, G) where To(F;G) is as in (4.3.4) is

A6y (TG, (T(F)) + Aeo(TIF)NG, (T(F)  Na, (T(F)ha, (T(F)NG(T(F )

- To(F;G1,G2) = e (T2 (Ne(T(F)))3

Switching the order of integration and differentiation, and replacing G; and G, with distribu-
tions degenerate at aﬁl and zo respectively, we obtain a candidate for the second kernel

(assuming T(F) = 0)

P(z1)Y'(z2) + P(z2) (1) + Y(z1)¥(z2) [ P"dF .

ho(F;z1,22) = — ([ ¥'dF)? (f vdF)3

We will now give sufficient conditions for a functional corresponding to an M-estimate to
be one, two or three times Fréchet differentiable according to definition 3.3.2 (recall this has slightly
weaker requirements than the standard definition). No additional concepts should be needed to

extend the proof of the theorem to higher order differentials.

~ Proposition 4.3.2. Let F be a cdf. Let v be such that [pdF = 0. Let k be 1, 2, or 8. Assume
that ¢ and its first k — 1 derivatives are absolutely continuous everywhere and have bounded total
variation. Assume that the k™' derivative of 1 exists a.e. with respect to Lebesgue measure and with
respect to the measure corresponding to F, and has bounded total variation. This implies that the
integral [ 'dF is well defined. Assume [/dFF > 0. For G € D with || G |loo sufficiently small
there exists a functional T(F + G) such that 0 = [z — T(F + G))d(F(z) + G(z)). Let ¥ be a
neighborhood of I in D where such. a T can be defined. Then T is k times Fréchet differentiable at
F with respect to || - ||loo and (4.8.8)—(4.3.5) hold. The kernels of the first three differentials of T

are
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JY"dF_ 'dF
(f ¢'dF)3’

hao(F; z4, 32) = "1/)(2:1)1/),(12) + (21 )é(z2)

(J paFye i

(4.3.7)

and

f ¢m dF
[ ¢dF)t

- 3(¢($1)¢(z2)¢'(23) + 1/)(:::1)«/;'(:1:2)1/)(::3) + ¢'($1)¢($2)¢($3)) (f :fl’:;;{)'4
U ary
+ 31/)(51)"/)(3’2)"/)( 3) (f 1/)'dF)5

+ Y] (za) + PY(z1)P" (z2)d(x3) + 9" (z1)1p(z2)(z3)
(f wdF)?
¢($1)¢'(-’22)1/J'($3) + ¢’ (z1 J(z2 )¢ (x3) + ¢'("’1)¢'(-’52)"/’(z3)
(fvdF)

h3(F; 21,29, 23) = — P(z1)p(z)¥(23) g (

(4.3.8)

We can apply this proposition to obtain a result on moment approximations of M-estimates
with non-decreasing 1 functions. We restrict ourselves to the case of the underlying distribution
being symmetric. This is not necessary, but is a common assumption and makes the expressions

simpler.

Proposition 4.8.3. Let I be a cdf which is symmetric about 0 such that
0 < o = lim inf M

z—r00 logz
Let ¢ be a bounded, non-decreasing, absolutely continuous, odd function. Assume that o' exists and
s continuous a.e. with respect to Lebesgue measure and with respect to the measure corresponding
to F, is of bounded total variation, and satisfies [ Y'dF > 0. Let F € D be the set where a solution
T(G) of 0 = [ ¢(z — T(G))dG(z) exists. Then ¥ contains all G € D which are non-decreasing and
a neighborhood of F with respect to || - ||co. If G is non-negative and non-decreasing this solution
minimizes [ p(z — T(Q))dG(z) where p(z) = [ Y(y)dy. Letting Fn denote the empirical cdf of n itd
observations from F it follows that T(F,) munimizes [ p(z — T(F,))dF, and
E[T(Fa)] =0, E(T(F.)?] = ff :/)”,ddFﬁ;z + of1/n). (4.3.9)
Assume, in addition, that the first two derivatives of i are absolutely continuous and
bounded. Assume also that the third derivdtive of 1 extists, is conltinuous a.e. with respect to Lebesgue
measure and with respect to the measure corresponding to F, and h.as bounded total variation. Then
E(T(F))] =" [v*dF 2 [y*¢'dF 3 [$PdF [(y')dF
n? (f@/dF)?  n?(frdF) - n? ([ 4/dF)t
3 [YUF [yp"dF 1 (f p2dF) [ Y™dF . (4:3.10)
W (fwary W (warp )
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The remainder of this section is devoted to proving the above two propositions. We begin

by giving a series of three lemmas. j

Lemma 4.3.4. Suppose 9 i3 ¢ function of bounded total variation. Then there ezists A > 0 such
that for all G € D .

sup | [P(z —t)dG(z) |[< A| G |loo -
—oo L t oo .

Proof: Since 1 has bounded total variation it may be written as the difference of two bounded
non-decreasing functions %; and 9. Let A be such that A/2 is a bound for these two functions.

For any fixed value of ¢

| £z — )dG(z) |<| [ $alz — )AC() | + | (e — )G(z) | .

ﬁut fori = 1,2

| [z — 8)dG(s) |< (4/2) sup | [ dG(=)|< (A/2) ]G lloo

—coLyLoo —oo

and the contention follows since ¢ was arbitrary. B

Lemma 4.3.5. Let F € D. Suppose 9 is absolutely continuous and bounded, and that 9/ ezists

a.e. I' and Lebesgue, and is bounded where it ezists. Then

~ - [vEar).

t=0

&"? / ¥z — 8)dF (=)

If, in addition, 1 is differentiable at each real z then for any GED, tER

(% / ¥z — t)dG(z) = — / P'(z — t)dG(z).

Proof: By the definition of derivatives

| % / ¥z — )dF(z) = lim / Yot ’2 i Chad) Y

For t = 0 the limit of the integrand of the right hand side is —4/(z) except at a set of F measure zero.
Since the integrand is bounded by sup_ < y<oo | ¥'(¥) | the first result follows by the dominated

convergence theorem.

The proof is the same for the second claim since ¢/(z — t) exists for a.e. © € G for any

G € D under the additional assumption. |}
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Our proof of Fréchet differentiability uses this lemma. If ¢ is not continuously differentiable
then for any ¢ > 0 there exists H € D with || H—F || < € such that H is not continuous at a point
of discontinuity of 1. Thus we cannot use this lemma to show the standard definition of Fréchet

differentiability holds if 1 is not continuously differentiable.

Lemma 4.3.6. Let F be a cdf. Suppose v is an absolutely continuous functién with bounded total

variation whose derivative exists, is bounded, and is continuous a.e. F. Suppose

ae(®) = [ vz - dr(a)

Ar(0) = 0, and Np(0) < 0. Then there exists a functional T(G) in a neighborhood of F' in D such
that

Ao(T(@) = [ 9t~ T(ENdG() = 0

and

NT(@) - T(F) |= O(| G = F ||0)-

Proof: From lemma 4.3.4 there exists A > 0 such that

sup | Xg(t)=rr(t)}= sup | [¥(z—t)(dG(zx)~— dF(z)) |
—co<LtL oo —coLt<oo
<A||G—F -

Let §; > 0,0 < 8 < —Np(0) be such that if t € (—6;,6;) and t 5% 0 then \p(t)/t < Np(0) + 8a.
For t € (0,5)

Ae(t) S Xp(t) + A||G—F |0 _
< HNp(0) + 62) + A ]| G ~ F ||oo -

It follows that if —A || G — F |leo /(Nw(0) + 82) < ¢ < & then Ag(t) < 0. Similarly, if
AllG-F |l /(X’w((j) +82) >t > 6 then Ag(t) > 0. Since A\¢(t) is continuous in ¢ for each
G € D, there is a solution of Ag(t) = 0 with [t | < —A || G = F |l /(NF(0) +82) if || G — F [loo
< =8, (Np(0) + 82)/A. W

Proof of proposition 4.8.2. Under the assumptions, we have by lemma 4.3.5 that, for j = 1,...,k,

& ®

= —_ (_1)3‘/,/,(1')‘1[.'_

= & [ e - ra)

We also have for arbitrary GE€ D, t€ R,and j =1,...,k—1,

t=

t=0

%XG“) = di:? / 1/’(fvft)dG(ﬂc) = (-1 f )z — t)dG.
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Using these facts it is easy to show that the formulas (4.3.3)—(4.3.5) hold.

For the remainder of the proof assume that || G — F || is sufficiently small so that T(G)
is well defined. By assumption \(0) = — [ ¢'dF > 0. Thus we may show

Np(O)RA(F; G — F) = —x'F(O)(T(m 1) - 3 TR 6 - F))

is of|| G —F ||i.), 0 < i < k to show Fréchet differentiability. For ¢ = 0 the result follows from
lemma 4.3.6. Recall Ap(0) = 0, Ag(T(G)) = 0. From (4.3.3) we have

N (O)R:(F; G — F) = ~Np(0)T(G) — Ag(0)
= 2#(T(G)) = N, (O)T(G)

- (4.3.11)
+2G(T(G) + Xe(0) - A(T(G)) — A6 {0).
By lemma 436, T(G) = TG — T(F) = O] G — F ||lx) and thus
Ar(T(G)) = Nr(0)T(G) = of|| G — F ||oo). We may rewrite the last line of (4.3.11) as
/(1/)(1: - T(G)) - 1/)(:c))d(G' —F). (4.3.12)

Since % is uniformly continuous and T(G) = O(|| G — F ||«) this may be written as
0(1G—F i) [ 416G~ F = O( ¢ - F|I2).

Applying the triangle inequality it follows that T is one time Fréchet differentiable.

We continue with similar proofs for second and third differentials. First we note that for

E>1

~Xp(0)Ri(F; G — F) = _)‘IF(O)(T(G) —T(F) - Ek: T;(F;G ~ F )/j!)

j=1 (4.3.13)

= Np(0)Rx_1(F; G — F) + Np(0)Tw(F; G — F)/k\.
From (4.3.4), (4.3.11) and (4.3.13) we have (after rearrangement)

~Np(0)Rs(F; G — F) =\p(T(G)) - ; (_T(f!_))zxg)(o)
(Ao +3+((E) + (50~ Nel0)7(@))
+ -;—X’é(o)((T(G))2 — (TW(F; G - F))2) |

+ (x’G(o) - )\'F(O))(T(G) - Ty(F; G — F)).

(4.3.14)
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The first line of this is a second order Taylor’s series expansion and is of|| G — F ||,) by the version

of Taylor’s theorem given in lemma 4.2.7.
The second line of (4.3.14) may be rewritten as
/ (1/)(.1: —~T(Q)) — P(z) + o' (x)T(G))d(G —F). (4.3.15)
Under the condition that ¢’ is continuous everywhere and of bouﬂded total variation, the integrand

may be bounded uniformly by a constant times (T{G))?. Thus (4.3.15) can be shown to be
O(|l G - F ||3,) as (4.3.12) was shown to be O(|| G — F ||2.). '

To show the third line of (4.3.14) is o|| G — F ||%,) we note that we have shown
T(G) = T(F; G - F)+ o{]| G — F ||0)
and thus
(T(G))? = (Tu(F; G = F))* + o{|| G ~ F ||oo)To(F; G = F) + of|| G~ F ||2,).

But T3(F; G — F) = O{|| G~ F ||o) by lemma 3.4.6.

In the fourth line of (4.3.14) we have

«(0) - Xe(0) = - [ WG~ F) = 0 G - F 1)

and T(G) — T1(F; G — F) = of|| G — F ||«) which implies the product is o(|| G — F ||2,).

Applying the triangle inequality we see that —\p(0)R2(F;G —F) = o(|| G~ F |]§°) and we

have shown that T is two times Fréchet differentiable at F'.

From (4.3.5), (4.3.13) and (4.3.14) we have (after rearrangement)

3 i
—)"F(O)R?»(Fi G- F) =)\F(T(G)) — Z __(T(]Gl)) )‘g)(o)

- (et +2nti@) + 3 T (000) - 3010))

+ (x'G(O) - x'F(O))(T(G) ~ Ty(F;G - F)= JTo(FiG ~ F ))_
1

+5 (00 - @) e - @uiric - )
+ PHO((TO) - (1(F 6 — I ~ Ti(F3G ~ FYT(F; G - ")
+ SO (X0 - (156 - FP).

(4.3.16)
The ideas nceded to show that each line of the right hand side of (4.3.16) is of|| G — F ||3,) have
already been given. We omit the details. J
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Proof of proposition 4.3.8. We have shown in proposition 4.3.2 that T(G) is well defined in a
neighborhood of F. Let G be a non-decreasing element of D. Ast — oo, A¢(t) = [ #(z —t)dG < 0
and as t — —o0, A¢g(t) > 0. Since A\g(t) is continuous and non-increasing this implies that there
is a solution T(G) of the e«iuation Ag(t) = 0. This also implies Ag(t) > 0 for all t < T(G) and
Ae(t) < 0 for all t > T(G). Since p is convex we have

/p(x —t)dG(z) > /p(a: — T(G))dG(z) +(T(G’) — ) / P(z — t)dG(z). -(4.3.17)

This holds even if [ p(z — T(G))dG(z) = oo since p is non-negative and G is totally positive. The
second term of the right hand side of (4.3.17) is greater than or equal to zero, and thus ¢ = T(G)
minimizes [ p(z — t)dG(m).

We will now justify the application of theorem 3.4.1. Proposition 4.3.2 gives us the existence
of the appropriate differentials. The tail condition needed on F is #ssumed. Let A be such that if
z > A then ¥(z) > (1/2)sup Y(y) = B/2. Let € = min(1 — F(A),1/4). Then

< 3B B B
— > === =
f Y( X,{m]],,+A)dr 518 >0

which implies T(Fp) > X{enjin — A. Similarly T(Fy) < Xpi—enj+1m + A Thus | T(F,) | <
’X([m],m | + ] Xp1—enj+1:n | +2A and condition 7 of theorem 3.4.1 is satisfied.

We Iﬁay now apply theorem 3.5.3. Under the symmetry assumptions we have Jy'dF =0

and thus the kernels are simplilied as follows:

(=)
1(F 1) f«(,b’dF
) _ Pz ) (2) + P (z1)(w2)
ho(F;zy, o) = (G ary
S p"dF

h3([‘ $1,$2,$3)——‘¢(31)¢(m2)¢ 3) f’!,b'dF)4

($1)¢(22)¢"($3) + (@ )" (wa )th(ws) + '/)"(ml)?/’(xzﬂ(ms)
(f ¢'dF)y
o P(2)¥ (22)¥(23) + V(21 )¢(m2)¥'(23) + $'(z1 ¢/ (w2 )b(z3)
(J prdFy

From definition 3.3.1 and theorem 3.5.3 the calculations to show the desired results are now simple.
We give one example. We have (recall Z; = éx, — F)

gy — W) = [YdF _ (Xy)
'_ll(F;Zl)—"' f‘lﬁ'dF - f¢'dF,

To(1; 24, 2,) = —2 P ) (X0 ] zb’«(iﬁld«i)xl)f YdF + [ydF [ §/dF
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Thus
[V*WdF  , [ydF

E[T1(F; 2))To(F; 21, Z1)) = —2( [wdF)* (f dF)*




Chapter 5

Applications

§5.1 Introduction.

We are at last prepared to try to give the reader a feel for the applications and limitations
of the theory we have presented by discussing some numerical examples and counterexamples. We
do not make any sort of extensive study of estimators or seriously attempt to find any optimal

estimators. Work in this direction is being done by Eynon (1982).

In section 2 we present some valid applications of our theory. We demonstrate using Monte
Carlo studies that the second order variance approxima.tioﬁs yield big improvements over the first
order approximations in some cases. Often the second order variance approximation is ‘better’ than
Monte Carlo approximation because the amount of calculation nceded to obtain the same degree of .

accuracy by simulation is large.

In section 3, we give some initial simulation results for nonparametric variance estimates

which are first and second order expansions for variances evaluated at the empirical cdf.

In section 4 we consider the median and trimmed means. These statistics do not satisfy
the Fréchet differentiability conditions of theorem 3.4.1. We show that we do not necessarily obtain
valid variance expansions in these cases by taking the limit of expansions for statistics which do

meet the diflerentiability conditions and approach the desired statistic.

§56.2 Initial examples.

In this section we give numerical examples of approximations which apply the theory of

chapter 4 for small to moderate sample sizes. Using simulation we show that in the cases presented

51
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_ ‘ "I’a(z’

Figure 1. Graph of 1, as defined in (5.2.1).

these approximations are quite good. Various applications are suggested. We use the incomplete

beta function

T'(p+qg) [*
Iu(?;?):"f(':-)ITZS o

to define our estimators. The functions defining our M-estimates (recall definition 4.3.1) are defined

21 —z)? ldze

for positive a by
I(1+z/a)/2(3’ 3)}" 1/2, if |[z]<a,
Ya(z) = < 1/2, ifz>a, (5.2.1)
—-1/2, - ifz < —a.

Figure 1 presents a graph of ¥,.

The first three derivatives of 9, are piecewise polynomial. The first two derivatives of Pa

are continuous everywhere, and the third derivative docs not exist at +a and is continuous elsewhere.

The three distribution functions we will use in our examples are the standard normal,

Flo)=—— [ "2y, (5.2.2)
V2r 7o

the Cauchy

F(z) = % + %tan_l(z), (5.2.3)
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and the Laplace

% e*, otherwise.

1—1e2, ifz>0,
F(z) = (5.2.4)
All of the conditions of proposition 4.3.3 needed to obtain first and second order variance approxima-
tions are easily verified for any positive a and any of the above three distribution functions. Although
our theory does apply to distributions with discrete components, we do not give any examples using

such distributions.

For each of our examples we compare first and second order variance expansions from
proposition 4.3.3 (for M-estimates) or proposition 4.2.6 (for L-estimates) with variance approxima-
tions obtained by simulation. In our simulations we use a combination of a linear congruential
and Fibonacci pseudo random number generators as recommended in Knuth (1969), (see pp. 9, 26,
30) to generate uniform pseudo random numbers. To obtain normal pseudo random numbers we
use the Box-Muller (1959) transformation in combination with the above uniform generator. To
obtain Cauchy and Laplace pseudo random variables we divide normal pseudo random variables by
indepel_ldent random variables having the appropriate distributions. See Andrews, et. al. (1972),
pp. 56-57. We use these so called normal/independent generators so that we may use the variance
reduction techniques deécribed in Andrews et. al. (1972), and (more thoroughly) in Simon (19786).
For the L-estimates we present we use pfccisely these variance reduction techniques. For M-estimates
we must use a slightly different procedure as our M-estimates are not scale invariant. The difference
in swindling techniques may sometimes cause the standard error of simulation approximations for

variances of M-estimates to be slightly larger than those for L-estimates.

Table 1 presents comparisons of approximations done by simulation and by the expansions
of proposition 4.3.3. Except for the first order approximation with n = 10 in the Cauchy example
all of the expansion approximations appear to be quite good. Although we have not given (complete)
theoretical justification, we suspect that the behavior of the variance expansions can be described

as

nVar(T(F,)) = o} + (1/n)ok + (1/n2)od + o(n™%).
Given that this formula is valid we would expect that the error in the first order approximation is
approximately o2 /n which is halved as n doubles, and the error in the second érder approximation is
approximately o3 / n? which is quartered as n doubles. ,Becat-lse of the standard error of the simulation
approximations it is difficult to tell if the error is béhaving like this in many cases. However, the
error in the first order expansion for the Cauchy and Laplace examples does appear to halve as n
doubles and for the Cauchy example it appears that the error of the second order approximation is

quartered as n doubles.
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Variance : »
F,a Approximation n=10 n =20 n =40
Normal Simulation size 40, 000 20,000 10,000
Distribution Simulation (Std. Err.) 1.197 (.002) 1.203 (.002) 1.203 (.003)
a=1 1% order 1.208 1.208 1.208

27 order 1.200 1.204 1.208
Cauchy Simulation size 160, 000 80, 000 40,000
Distribution Simulation (Std. Err.) 3.341 (.017) 2.714 (.012) 2.472 (.012)
a=.6 1% order 2.278 2.278 2.278

27 order 2.959 2.619 2.449
Laplace Simulation size 160; 000 80,000 40,000
Distribution Simulation (Std. Err.) 1.419 (.004) 1.335 (.005) 1.295 (.007)
a=1.5 15% order 1.266 1.266 . 1.266

2" order 1.409 1.338 1.302

Table 1. Variance approximations for M-estimates with 3 = ,.

The first column of table 1 gives the distribution for which estimates of location are being

made as well as the parameter a of this M-estimate. The column labelled ‘Variance approximation’

gives a brief description of the values presented in each row. The last three columns are headed by

the sample size for the estimates considercd. The first row of each section presents the simulation

size used for the Monte Carlo approximation of n times the variance given in the second row. The

standard error of this approximation is given in parentheses. The third and fourth rows give the first

and second order approximations, respectively, of n times the variance obtained from proposition

4.3.3.

For a given distribution function F and positive a we will consider an L-estimate as defined

in definition 4.2.6 with:

Ja,F(u) —_ ’a(F——l ('"'))‘

T adr (5.2.5)

where 4/, is the derivative of 1, in (5.2.1). Figure 2 presents a graph of this function when F' is the

standard normal distribution.
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J,,,p(u)

Figure 2. Graph of J, r as defined in (5.2.5) with @ = 1.3 and F =standard normal cdf.

Note that the shape of J, r changes as a and F change. For F as in (5.2.2)—(5.2.4)
it is easily verified that we can apply proposition 4.2.6 to obtain first and second order variance
approximations of L-estimates corrésponding to (5.2.5). From (4.2.4)and (4.3.6) we see that this
L-estimate has the same influence curve as the M-estimate corresponding to ¥,. This implies that

the M- and L-estimates corresponding to 9, have the same first order variance approximation (recall

(3.5.10) and the fact that T1(F'; Zy) = h1(F; X1)—E[h1(F; X)), where h((F;-) is the influence curve).

Table 2 shows results similar to those given in table 1. Note that the second order term can
be important for comparing variances of corresponding M- and L-estimates, especially for the Cauchy
distribution. In comparing the normal examples of tables 1 and 2 we see first order asymf)hotically
equivalent estimators where the variance for n =10, 20,40 is smaller for the L-estimate than the M-

estimate. In all other examples given in this section the M-estimate has outperformed its counterpart.
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Variance _
F,a Approximation n=10 n =20 n =40
Normal Simulation size 40, 000 20,000 10,000
Distribution Simulation (Std. Err.) 1.181 (.001) = 1.195 (.002) 1.198 (.003)
a=1 1% order 1.208 ' 1.208 1.208

2nd order 1.182 1.195 1.202
Cauchy Simulation size 160, 000 80, 000 40,000
Distribution Simulation (Std. Err.) 3.404 (.016) 2.743 (.012) 2.484 (.012)
a=.6 15¢ order 2.278 2.278 2.278

2nd order 3.006 2.642 2.460
Laplace Simulation size : 160, 000 80, 000 40,000
Distribution Simulation (Std. Err.) 1.448 (.003) 1.356 (.005) 1.307 (.007)
a=15 1% order 1.266 1.266 1.266

27 order 1.456 1.361 1.314

Table 2. Variance approximations for L-estimates with J = J, p.

Table 2 is arranged as table 1. The first column gives the distribution for which estimates
of location are being made as well as the parameter a of this L-estimate. The column labelled
‘Variance approximation’ gives a brief description of the values presented in each row. The last
three columns are headed by the sample size for the estimates considered. The first row of each
section presents the simulation size used for the Monte Carlo approximation of n times the variance
given in the sccond row. The standard error of this approximation is given in parentheses. The
third and fourth rows give the first and second order approximations, respectively, of n times the

variance obtained from proposition 4.2.6.

When one wishes to compare variances of estimators from a class such as that described
by the M-estimates corresponding to (5.2.1) or the L-estimates of (5.2.5) the expansions presented
" here can be particularly useful. Using simulation results to compé.re more than a few members of
such a class would require an exorbitant amount of computer time. The variance approximations
of propositions 4.2.6 and 4.3.3 take little computing time in comparison. Figures 3 and 4 present
variance approximations for M-estimates corresponding to (5.2.1) and L-estimates corresponding to

(5.2.5) when the underlying distribution is the Cauchy distribution given in (5.2.3).
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Figure 8. Variance approximations for L- and M-estimates; n=10.

Figures 3 and 4 present variance approximations for M-estimates corresponding to (5.2.1)

and L-estimates corresponding to (5.2.5) whén the underlying distribution is the Cauchy distribution

given in (5.2.3). The lower line gives the first order variance approximations for both estimates as

a function of a. The middle and upper lines give the second order approximation for M-estimates

and L-estimates, respectively. The M'’s and L’s plotted are simulation approxihations for M- and

L-estimates, respectively. The standard errors of the simulation results are about .03 except for the

L-estimates corresponding to n = 10 and the two largest values of a where the standard errors are

.08 and .15, respectively. Note that the scales on the y-axes of the two graphs differ. ’
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] nVar . L
3.7
-
B <~ 1% order
N a
s T T 1 1T 1 L [ T ¢ b 1 1T 1 1 I l
0. ‘ 1. 2,
Figure 4. Variance approximations for L- and M-estimates; n=20.
There are several things worth noting in these figures. First, the error in the second
order approximation is about one fourth as large for n = 20 as for n = 10. The second order

approximation is much improved over the first order approximation. In choosing an optimum value
of a it is clearly important to consider th; second order approximation rather than just the first
order approximation. Although the sccond order curves cross, it appears that for n = 10 or 20 there
is no value of a for which the L-cstimate is better than the M-estimate. Finally, for L-estimates the
approximation gets worse as a increases, but for M-estimates this is not the case. This is undoubtedly-

related to the fact that for a > F~1(1 — 2/n) the second moment of the L-estimate is infinite.

Hodges and Lehmann (1970) discuss the comparison of variances of estimators which have

the same first order efficiency. Assuming
aVar p(TW(F,)) = o3 + (1/n)o2; + o(1/n)

and

" nYarF(T(2)(Fn)) = o2 +(1/n)ok, + o(1/n)
where 099 > 092, they sixggest a measure called deficiency (or asymptotic expected deficiency)

defined by

o2, —al
d=-2_-3%_ (5.2.8)

gy
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They note that as n becomes large, the number of additional observations d,, needed to make
nVarp(T®(Fpia,)) = Varp(TW(F,)) + o{1/n?)

tends to d. As an example we let T(1)(F,) be an M-estimate with ¥ = 9, and let T@3)(F,) be an
L-estimate with J = Ja,r where F is the Cauchy distribution of (5.2.3) and @ = 1.8. The first
coefficient of the variance approximation is 2.6 and the second coefficients are 5.2 (M) and 11.0 (L).
This and (5.2.6) suggest that .a.pproximately d = (11.0 — 5.2)/2.6 = 2.2 additional observations are
needed to get the same variance for the L-estimate as for the M-estimate as n becomes large. Table
3 indicates that for this example n must be moderately large befofe the variances of T(‘)(Fn) and
T(2)(F,,+|[d]l) become very close. Note that even the lines la.Belled 9nd grder’ are not that close.
For‘ most of the other examples considered in this section it appears that the asymptotic expected

deficiency is less than 1.

Variance
Approximation
M-estimate Sample size ‘n==_8 n=18 n =38
Simulation size 8, 000 4,000 2, 000
Simnulation (Std. Err.) 3.831 (.089) 2.974 (.055) 2.794 (.062)
1%% order 2.608 o 2608 2.608
2" order 3.262 . 2.899 2.746
L-estimate Sample size n=10 n =20 n =40
Simulation size 50, 000 25, 000 12,500
Simulation (Std. Err.) 4.857 (.146) 3.339(.029) 2.918 (.027)
1% order 2.608 2.608 2.608
2 order 3.705 3.156 2.882

Table 8. Deliciency example: Cauchy distribution, a = 1.8

Table 3 is arranged somewhat differently than tables 1 and 2. The M-estimate considered
has the 9 function given by (5.2.1). The L-estimate considered has the J function given by (5.2.5).
The column labelled ‘Variance apbroximation’ gives a brief description of the values presented in
each row. The first row of each section presents the sé'.mple size for the estimate of interest. The
second row of each section presents the simulation size used for the Monte Carlo approximation of
n times the variance given in the third row. The standard error of this approximation is given in '
parcntheses. The fourth and fifth rows give the first and second order approximations, respectively,

of n times the variance obtained from propositions 4.2.6 and 4.3.3.
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Variance ,
F,a Approximation n =10 n =20 n =40
Normal Simulation size 40, 000 20,000 10,000
Distribution Simulation (Std. Err.) 1.164 (.001) 1.183 (.002) 1.192 (.003)
a==1 1% order 1.208 ' 1.208 1.208

28d order 1.182 1.195 1.202
Cauchy Simulation size 160, 000 80, 000 40,000
Distribution Simulation (Std. Err.) 3.411 (.016) 2.744 (.012) 2.485 (.012)
a=.6 1% order 2.278 2.278 2.278

2nd order 3.006 2.642 2.460
Laplace Simulation size 160, 000 80, 000 40,000
Distribution Simulation (Std. Err.) 1.476 (.003) 1.373 (.005) 1.316 (.007)
a=15 1% order 1.266 1.266 1.266

2nd order 1.456 1.361 1.314

Table 4. Variance approximations for L-estimates with J(i/(n + 1)) coefficients; J = J, p.

Table 4 is the same as table 2 except that the L-estimates simulated use coefficients
J(i/(n+1)) instead of 'f(i‘./fl)/n J(u)du, ¢ = 1,2,...,n. We have normalized these coeflicients so that
they sum to one. The table is arranged as tables 1 and 2 are. The first column gives the distribution
for which estimates of location are being made as well as the parameter a of this L-estimate. The
column labelled ‘Variance appraximation’ gives a brief description of the values presented in each
row. The last three columns are hcaded by the sample size for the estimates considered. The
first row of each section presents l'fhe simulation size used for the Monte Carlo approximation of n
times the variance given in the second row. The standard error of this approximation is given in
parentheses. The third and fourth rows give the first and second order approximations, respectively,

of n times the variance obtained from proposition 4.2.6.

The first thing to note in table 4 is that, as before, all expansions except for the Cauchy
distribution with n = 10 appear quite good. The error of the first order approximation always
appears to halve as n doubles. The error of the sccond order approximation for the normal
distribution goes down by a factor of two as n quadruples. For tﬁe Cauchy distribution however,
this error appears to quarter as n doubles, as before. Because of the standard error of the Monte
Carlo approximation, the error behavior for the Laplace example is unclear. Whether or not the
second order approximation is a correct one when coefficients for an L-estimate are computed in

this fashion is not readily apparent from these examples. We have not attempted. to justify this
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expansion theoretically.

§5.3 Nonparametric variance estimates.

Since it is rarely the case that the underlying distribution function is known, we wish to
give a brief example indicating that these expansions may be useful in approximating variances if

we substitute the empirical distribution function in our formulas.

The variance of a functional T(F,) can be considered a functional of the underlying

distribution function F', namely
" 0%(n, F) = Varp(T(F,.)). (5.3.1)

In chapter 4 we have given formulas approximating ¢%(n, F) by an expression of the form

o(n, F) = —o3(F) + —503(F) + o{1/n?) (5.3.2)

We briefly consider the nonparametric variance approximations

no’(n, F) = o3(Fy,) (56.3.3)
and
no(n, F) = o} (Fn) + —;;ag(F,.). (5.3.4)

These approximations are ‘delta method’ approximations and can also be considered as first and

second order approximations of the bootstrap estimate of variance, namely o?(n, F,).

Since the standard deviation of o?(F,), ¢ = 1,2,... is, in general, O(1/y/n) one might
expect that the second (or any higher order term) of (5.3.2) would be useless. The reason we have
considered this term is that it provides a second order apﬁroximation of the bootstrap which Efron
(1981) has noted can be a better a.pproxirria.tion than the first order delta method (note: Efron

usually refers to the first order delta method as the infinitesimal jackknife).

As an example of the type of calculation to be done we recall the first order variance

approximation of (4.2.7) and note that to obtain the right hand side of (5.3.3) we compute

‘ //(Fn(min(zl, Ts)) — Fn(zl)Fn(a:g))J(Fn(xl))J(Fn(xg))dmldxg

= 2 (Xitron — Xion) (i/m)(1 — i/m)(J(i/m))”
n—2 ‘ ) n—1 .
23 (XKt — Xem)(i/n)I(/n) 30 (Xitrm = Xym)(1 = §/m)I(i/m).

i==1 F=i+1 .
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Variance
F,a Approximation n =10 n =20 n =40
Normal Simulation size 40,000 20, 000 10,000
Distribution Simulation (Std. Err.) 1.181 (.001) 1.195 (.002) 1.198 (.003)
a=1 1% order 1.208 1.208 1.208

ond order 1.182 1.195 1.202

15¢ delta (Std. Dev.), 1.377 (1.008) 1.298 (.675) 1.260 (.466)

274 delta (Std. Dev.) 1.364 (.779) 1.216 (.559) 1.242 (.426)

1%t delta CV 74 .35 17

2nd delta CV 44 26 15

CV bound 22 11 .05
Cauchy Simulation size 160, 000 80, 000 40, 000
Distribution Simulation (Std. Err.) 3.404 (.016) 2.743 (.012) 2.484 (.012)
a=.6 15% order 2.278 2.278 2.278

2nd order 3.006 2.642 2.460

15 delta (Std. Dev.) 5.553 (13.910) 3.342 (3.437) 2.759 (1.777)

27 delta (Std. Dev.) -.057 (30.913) 4.114 (5.394) 2.466 (1.496)
Laplace Simulation size 160, 000 80, 000 40, 000
Distribution. Simulation (Std. Err.) 1.448 (.003) 1.356 (.005) 1.307 (.007)
a=15 1% order 1.266 1.266 1.266 :

2nd order 1.456 1.361 1.314

1% delta (Std. Dev.) 1.765 (1.381) 1.510 (.835) 1.387 (.541)

274 delta (Std. Dev.) 1.479 (1.135) 1.505 (.791) 1.431 (.535)

Table 5. Nonparametric variance approximations for L-estimates with J = J, p.

Table 5 is an expanded version of table 2. The first column gives the distribution for which

estimates of location are being made as well as the parameter a of this L-estimate. The column’
labelled ‘Variance approximation’ gives a brief description of the values presented in each row. The
last three columns are headed by the sample size for the estimates considered. The first row of each
section presents the simulation size used for the Monte Carlo approximation of n times the variance
given in the second row. The standard error of this approximation is given in parentheses. The third
and fourth rows give the first and second order approximations, respectively, of n times the Qariance
obtained from proposition 4.3.3. The rows labeled ‘1% delta’ give the average value of 03(F,) as in
(5.3.3) from the simulation. The rows labeled ‘2" delta’ give the average value of the right hand
side of (5.3.4). Included in these rows are the éstimated standard deviations of these estimators. It
can be argued that a lower bound for the cocfficient of variation of any location and scale invariant
scale estimate for normal observations is that of s2, namely 2/(n — 1). This value is given‘ in the

row labeled ‘CV bound’. The estimated cocflicients of variation for the normal case are labellcd ‘18%
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delta CV’ and ‘2" delta CV’.

Fo.: the Cauchy distribution these approximations appear to be quite poor. For the nor-
mal and Laplace distributions the approximations appear reasonably good with the second order
approximation appearing to have both lower bias and lower variance than the first order approxima-
-tion; the only exception to this is that the bias is higher for the second order delta method for the
Laplace distlfibution with n = 40. '

It appears that further study of second and higher order delta method approximations
might be worthwhile. From table 5 it appears that an important part of such a study would be to

formulate estimates of the variation of such approximations.

§5.4 Quantiles and trimmed means.

In this section we present a pair of ‘non-applications’ of the theory we have developed. One
might hope that the moment expansion of the limit of a set of estimators is the same as the limit of the
moment expansions of these estimators. If this were true one could obtain variance approximations
for trimmed means, quantiles, and other estimators which do not satisfy the assumptions of the
moment convergence propositions that we have given. We give examples where the limit of the
variance appr(;ximations of estimators is not equal to the variance expansion of the limit of the
estimates. It will be seen, however, that we may improve a variance approximation substantially by

using an (incorrect) expansion developed by taking the limit of expansions.

There are many simple functionals which are not Fréchet differentiable. Quantiles and
linear combinations of quantiles are among these. We show this. for a particular case as an example

of the type of problem that may arise with a ‘well behaved’ functional.

Let T(F) = inf{g : F(q) > ¢} where c € (0,1), F € D. Note that T(F) = oo if the defining
set is empty. Let F(z) = z on [0,1]. We shall show that T is not Fréchet differentiable at F. For
A>0y€ER et Py =F+\&, — F). For y fixed and X\ sufficiently small we have for y # ¢
T(Fx,y) = (¢ — X6y(c))/(1 — \). The Gateaux differential of T' at F in the dircction of &, — F is by
definition | '

lim w = lim M}@ :—-.c—&v(c).

_ A—0 A x—=0 A1 -=2X)
If the Fréchet differential exists, clearly it must be equal to the Géteaux differential. Thus to
show that T is not Fréchet differentiable at F' it suffices to show that for some ¢ > 0 and any
6 > 0 there exists I\ y such that || Py — F |lo < & and |T(F,) — T(F) = Mc — 8y(c))|
> €|| Py = F |l Fix e € (0,c). Let § € (0,1 — c) be arbitrary. Let \ < 6. 0 < y < 1
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then || Fay = F |lo = y + M1 —9) —y = M1 —9) < 8. Suppose ¢ < y < ¢/(1 —X\). Then
T(Fy,y) = y and

T(Fy)—T(F)— Nc—6y(c)) =y — c - Xe.

Since for each A > 0
. y—c— A\
inf e
| e<y<e/(1-2) X
it follows that T is not Fréchet diﬂ'erentiable‘ at F.

= —c < —€

Since a quantile is not Fréchet differentiable we cannot apply theorem 3.4.1 to approximate
moments. We now try to find a second order variance approximation for the median by taking -
the limit of expansions of M-estimates which approach the median. Let ¢ be a continuous non-
decreasing, non-constant, odd function on R such that for z > 1, 9P(z) = 1/2. Assume also that
9’ and 9" exist everyv'vhere and that 9" exists and is bounded everywhere except possibly at +1.
For any positive a let ¢,(z) = ¢(z/a). From proposition 4.3.3 we know that it Fis symmetric and
differentiable at @ and satisfies the necessary tail conditions then the variance of the M-estimate
corresponding to ¥, for a sample of size n from F may be written as in (4.3.10). Letting e — 0 it

can be shown that if F' is symmetric and three times differentiable at 0 then this is

1 5 1 7"(0) —2 '
—_——— - 4.1
(5 5 )t ~ oot oo™ (5:4:1)
provided f(0) > 0. David (1980), p. 81 gives an expansion for the variance of a quantile. In the

case of the median with F symmetric the formula he presents reduces to

1 2 1 1"(0) _ '
(?Z - n—) TOF ~ oo T A > (5.42)

In this case as a — O the estimators corresponding to 1;11,, converge. to the median. Whereas the

moment expansions of (5.4.1) and (5.4.2) are not the same, they are very similar. It appears that

there is an ‘extra term’ when we do the calculation to obtain (5.4.1). -

The trimmed- mean is another case where we might try to get a variance ap;iroxima.tion
by taking the limit of variance approximations of statistics which approach the trimmed mean. In
this case we will have three times Fréchet differentiable functionals approaching a trimmed mean
which is one time Fréchet differentiable. Thus we have a ‘smoother’ situation than with the median
above where the limiting functional was not Fréchet differentiable. The approximation obtained in
this fashion appears likely, once again, to be incorrect.

The o-trimmed mean is an L-statistic with weight function

faf<u<l-eq

J(u) = {‘_:153 ; . (5.4.3)

0, otherwise.
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Because J is not differentiable at a and 1 — & we may not apply proposition 4.2.6 to obtain second

order variance approximations. A smoothed version of this weight function is given by

= fate<u<l—a—g

1 u—a .
el — fa—eSu<a+e
Jy=4"" (=) g (5.4.4)

1—12aw(1;%::): Cifl-a-eSu<l-a+te

0, otherwise,

where w is defined on [—1, 1] and has the following properties: 1) w(~1) = 0, w(1) = 1; 2) w is
three times continuously differentiable on -1, 1] with w/(—1) = w'(1) = 0; 3) w is symmetric about

0, i.e. w(u)=1— w(—u).

Property 3 implies f_{l w(z)dz = 1. This implies that if J is defined as in (5.4.4) then
fol J(u)du = 1. The L-statistic corresponding to this weight function will be referred to.as an e-
smoothed, o-trimmed mean. For any e-smoothed, a-trimmed mean we have J and J() continuous
and bounded on [0,1], and J () continuous and bounded except possibly at a + e and 1 —a +¢ It
follows that if

0 < limint OB =F@) o g Zloe F(=2) (5.4.5)°
z—00 logz ‘ z—r00 logz

and either ! is continuous at a« + € and 1 — & + € or w"(—1) = w"(l) = 0 then we may apply

proposition 4.2.6 to obtain bias and first and second order variance approximations.

We consider the case where F is symmetric about zero, is two times differentiable at ‘F ~a),
and satisfies (5.4.5). We let § > 0 be such that f(z) = £ F(z) exists in (F~!(a — §), F~Y(a + §)).
For any € € (0, §) it follows that F/~! i:;. continuous at a4+ €, 1 — @+ ¢ and we may apply proposition
4.2.6. For the {irst order variance term we will apply (3.5.9) rather than (4.2.7). Note that T(F) = 0.
From (4.2.4) and dcfinition 3.3.1 we can show that if 2 = §, — F then

z/(1 - 2a), : if |z|<Fl{1-—a-g¢),
sgn - } “at+e) (Fly)-a . -

Ty(Fi2) = { S (F - a— 9+ LT w(M)ay), it |12 Fi(1-a+td)
sgnz (F-—l(l —a—€)+ IFI;I (a+e) w(&”‘):‘:)dy)’ _otherwise.

(5.4.6)

This implies that the first order variance approximation has coefficient
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F~l(1—a—¢) o+ e
BL(R 2] = s |, SdF (o) + 22D (p1(1 - o o)

(}1 - 2a)? 1 —2a)?

2(a—¢€) P ate) w Fly)— a *

T - 2a) (/F—l(a_—e) ( € )dy -
Ya—-e)F (1—a—¢) F= a+e) Fly)—a

" (1 —2a)? F=1(a—c) w( € )dy

‘ F~(a+e) z 2
2 / / (F(y)—a) )
s T P Vdy ) aF
T T 2aP Jr-i (o ( Fria—g \ € v) 4l

-1 -1
4F-1{1-a—¢) o ate) /F (te) (F(y) - a)
e —=mm dyd "
T A2 Jriee A\ e ydf(z)

(5.4.7)

Fl(1-a) o
—mrh e - a0

Appl};ing (4.2.9), (5.4.4) and the properties of w, a series of straightforward calculations shows that

the following is the coefficient of 1/ n? in the second order variance approximation:

b (ememan L ()
([ o -smene(1==)er)

e e ek [T - o )

F-'{a—€)

A (1))

42 /F-l(a+:)(F(x1))2w'( W ) LF_l(a+€)(1—F(z2))2w'( F(z%g )dxzdm

€ JF-Y (a—e 1

frmmamae [ (=2

| (/:((j, e - F(x))w"(ﬂ“—’g-ﬁ)dx)

—‘i— 2 /F-‘(a+6) F(zl)w(frﬁl:)”_"‘) /zF—‘(“‘#) F(zs)(1 - F(m))zw"(f(mze)—_a)d@da;l }

€ JP-1(a—¢) )
(5.4.8)
Further straightforward calculations show that if F is two times differentiable at F~!(c) then this

is equal to

20(1 = P11 - 0)(  ['(F~(a)) _ o? oft)ase—0
(1 — 20 (F~(a)) (“‘u(F-l(a»)? 1)+(1-2a)(f(p—l(a)»z+ (1) 0. (5.49)
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Equations (5.4.7) and (5.4.9)> suggest the following approximation for the a-trimmed mean when F
is symmetric and two times differentiable at F~!(a) and (5.4.5) holds:

1 9 Pl(1—a) )
;(_I_Ta)z(./o‘ z dF(Z) + Q(F—l(l - a))z) .
. ~ (5.4.10)
1 (2a(1 —a)FY1 - a)( f'F ) 1) + a? )
w2\ (1 =202 f(F1(a)) \"(/(F()))® (1 - 2a)(f(F-Y(a)))? )
Monte Carlo
Distribution ~ %trim  n  Exact 1% order (Err.) 2°d order (Err.)  Approx. (Err.)
Normal 10 5 1019  1.060 (.041) 1.031(.012) 1.020(.001)
10  1.053  1.060 (.007) 1.046 (-.007) 1.048 (-.005)
20 1.055  1.060 (.005) 1.053 (-.002) 1.056 (.001)
25 5 1145  1.195 (.050) 1.144 (-001) ~  1.156 (.011)
10 1164  1.195 (.031) 1.170 (.006) 1.148 (-.016)
20 1186  1.195 (.000) 1.182 (-.004) 1.199 (.013)
Laplace 10 5 - 1.758 1.494 (-.264) 1.825 (.067)
10 1.617 1.494 (-.123) 1.659 (.042)
20 1556  1.494 (-.062) 1.577 (.021) 1.60 (.04)
25 5 1509 1227 (-372) 1.766 (.167)
10 1424 1.227 (-197) 1.497 (.073) ‘
20  1.228  1.227 (-.001) 1.362 (.134) 1.33 (.10)
" Cauchy 10 20 8282 4771 (3511)  6.78 (-1.50) 7.3 (-1.0)
40 4.771 5.77 5.40
25 10 4498 2546 (-1.952)  3.58 (-.92) 4.6 (1)
20 3182 2,546 (-636)  3.06(-.12) 3.1(-.1)
40 2.546 2.80 2.61

Table 6. Variance approximations for trimmed means.

Table 6 contains exact values and various approximations for n times the variance of

various trimmed means. We have used the approximation in (5.4.7) and (5.4.10) to compute the

approximations of n times the variance given in the columns labelled ‘1% order’ and ‘2™ order’,

respectively. Some of the exact numbers were found in Gastwirth and Cohen (1970). Other exact

variances were computed using tables of variances and covariances of order statistics. These tables

are given by Sarhan and Greenberg (1964) (normal), Govindarajulu (1966) (Laplace), and Barnett

(1968) (Cauchy). In the last column of the table are Monte Carlo approximations of the variances

of trimmed means which can be found in Andrews et.al. (1972). We do not consider the trimmed

mean for the Cauchy distribution with 10% trim and n = 10 as the true variance is infinite.

Looking at these numbers carefully suggests that the second order term of (5.4.10) is not
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correct as the difference of the columns labelled ‘Exact’ and ‘Approx.’ often decreases only by a
factor of about two as n doubles. Note also, however, that even these apparently incorrect second
order approximations can be a great improvement over first order expansions. The Monte Carlo
approximations given used variance reduction techniques and simulation sizes of 640 to 1000. The
error of these approximations is comparable to the error of 2" order approximation given. We have
not attempted to rigorously derive a correct vei'sion of the second order variance approximation of
the trimmed mean. Because of the widespread interest in trimmed means such a derivation might

be worthwhile.
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